Hostname: page-component-cd9895bd7-dzt6s Total loading time: 0 Render date: 2024-12-28T19:38:20.739Z Has data issue: false hasContentIssue false

Electrical Behavior I-V Theoretical-Experimental OLEDS

Published online by Cambridge University Press:  10 February 2014

José M. Burgoa
Affiliation:
Unidad Profesional Interdisciplinaria de Ingeniería y Tecnología Avanzadas-IPN, Av. Instituto Politécnico Nacional 2580, México City, 07540.
Cecilia González-Medina
Affiliation:
Unidad Profesional Interdisciplinaria de Ingeniería y Tecnología Avanzadas-IPN, Av. Instituto Politécnico Nacional 2580, México City, 07540.
Ramón Gómez-Aguilar
Affiliation:
Unidad Profesional Interdisciplinaria de Ingeniería y Tecnología Avanzadas-IPN, Av. Instituto Politécnico Nacional 2580, México City, 07540.
Jaime Ortiz-López
Affiliation:
Escuela Superior de Física y Matemáticas-IPN, Av. Instituto Politécnico Nacional Edificio 9, Unidad Profesional Adolfo López Mateos, Zacatenco, Mexico City, 07738.
Get access

Abstract

We develop a program (within MATLAB software environment) to numerically simulate current-voltage characteristics of a bilayer organic light-emitting diode (OLED). The program is based on the Poole-Frenkel and Schottky continuous quantum models which take into account the geometry of thin films and their emission parameters in the calculation of charge carrier and current density in organic materials. Simulations are performed for OLEDs with A/EML/C and A/HIL/EML/C architectures where A=anode, HIL=hole injection layer, EML=emissive layer and C=cathode. For EML we assume MEH-PPV and MDMO-PPV derivatives of poly-para-phenylene-vinylene (PPV) polymer semiconductor, and for HIL we use PEDOT:PSS. The results of simulation are compared with experimental results obtained from actual OLED devices constructed in our laboratory. For comparison we also use the commercial software SimOLED to simulate the devices under similar architectures. We find in general a fair agreement between the simulated and measured behavior except for a few orders of magnitude difference in the current.

Type
Articles
Copyright
Copyright © Materials Research Society 2014 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Brutting, W., Berleb, S., Muckl, A.G., Synthetic Metals 122, 99 (2001).CrossRefGoogle Scholar
Chu, T., Song, O., Appl. Phys. Lett. 90, 203512 (2007).CrossRefGoogle Scholar
Chang, R., Hsu, J.H., Chem. Phys. Let. 317, 153 (2000).CrossRefGoogle Scholar
Holt, A.L., Leger, J. M., Carter, S. A., J. Phys. Chem. 123, 44704 (2005).CrossRefGoogle Scholar
Yu, Gang, Li, Yongfang, Hegger, Alan J., App. Phys. Lett 73, 111 (1998).CrossRefGoogle Scholar
Shi, Y., Liu, J. and Yang, Y., J. Appl. Phys. 87, 4254 (2000).CrossRefGoogle Scholar
Pasveer, W. F., Cottaar, J., Tanase, C., Coehoorn, R., Phys. Rev. Lett. 94, 206601 (2005).CrossRefGoogle Scholar
Tian, B., Schenk, R., J. Phys. Chem. 95, 3191 (1991).CrossRefGoogle Scholar
Hameed Ta, Shahul, Predeep, P. and Baij, M.R., IJSSST 11, No. 4 Google Scholar
Bozano, L. D., Kean, B. W., Deline, V. R., Salem, J. R., and Scott, J. C., Appl. Phys. Lett. 84, 607 (2004).CrossRefGoogle Scholar
Mitrofanov, Oleg, Manfra, Michael, J. Appl. Phys. 95, 6414 (2004).CrossRefGoogle Scholar
Middleman, S & Hochberg, AK. Process Engineering Analysis in Semiconductor Device Fabrication. McGraw-Hill. New York, USA. (1993) pp. 313.Google Scholar