Hostname: page-component-745bb68f8f-g4j75 Total loading time: 0 Render date: 2025-01-15T06:56:49.943Z Has data issue: false hasContentIssue false

Electrical Injection and Transport in Films of Semiconductor Nanocrystals

Published online by Cambridge University Press:  10 February 2011

D.S. Ginger
Affiliation:
Cavendish Laboratory, Madingley Road, Cambridge, CB3 OHE, U.K.
N.C. Greenham
Affiliation:
Cavendish Laboratory, Madingley Road, Cambridge, CB3 OHE, U.K.
Get access

Abstract

We study injection and transport in thin disordered films of CdSe nanocrystals between metal electrodes, We investigate the current-voltage characteristics of these devices as a function of electrode material, nanocrystal size, and temperature. We also measure the photocurrent response of these devices, and find that the photocurrent action spectra follow the quantum-confined absorption spectra of the nanocrystals. For dissimilar top and bottom electrodes, we find that the devices are highly rectifying. By studying space charge limited currents in these devices, we are able to place a lower bound on the effective carrier mobility in such films, and we find that the effective mobility is strongly field dependent. We find that the conductivity is strongly temperature dependent, and is qualitatively consistent with an activated hopping process at temperatures above 180 K.

Type
Research Article
Copyright
Copyright © Materials Research Society 2000

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Greenham, N. C., Peng, X., and Alivisatos, A. P., Phys. Rev. B 54, 17628 (1996).10.1103/PhysRevB.54.17628Google Scholar
2. Colvin, V. L., Schlamp, M. C., and Alivisatos, A. P., Nature 370, 354 (1994).10.1038/370354a0Google Scholar
3. Dabbousi, B. O., Bawendi, M. G., Onitsuka, O., and Rubner, M. F., Appl. Phys. Lett. 66, 1316 (1995).10.1063/1.113227Google Scholar
4. Schlamp, M. C., Peng, X., and Alivisatos, A. P., J. Appl. Phys. 82, 5837 (1997).10.1063/1.366452Google Scholar
5. Mattoussi, H., Radzilowski, L. H., Dabbousi, B. O., Thomas, E. L., Bawendi, M. G., and Rubner, M. F., J. Appl. Phys. 83, 7965 (1998).10.1063/1.367978Google Scholar
6. Collier, C. P., Vossmeyer, T., and Heath, J. R., Annu. Rev. Phys. Chem. 49, 371 (1998).10.1146/annurev.physchem.49.1.371Google Scholar
7. Yoffe, A. D., Adv. in Phys. 42, 173 (1993).10.1080/00018739300101484Google Scholar
8. Alivisatos, A. P., Science 271, 933 (1996).10.1126/science.271.5251.933Google Scholar
9. Klein, D. L., McEuen, P. L., Katari, J. E. Bowen, Roth, R., and Alivisatos, A. P., Appl. Phys. Lett. 68, 2574 (1996).10.1063/1.116188Google Scholar
10. Klein, D. L., Roth, R., A. Lim, K. L., Alivisatos, A. P., and Mceuen, P. L., Nature 389, 699 (1997).10.1038/39535Google Scholar
11. Janes, D. B., Kolagunta, V. R., Osifchin, R. G., Bielefeld, J. D., Andres, R. P., Henderson, J. I., and Kubiak, C. P., Superlattices and Microstructures 18, 275 (1995).10.1006/spmi.1995.1112Google Scholar
12. Andres, R. P., Bielefeld, J. D., Henderson, J. I., Janes, D. B., Kolagunta, V. R., Kubiak, C. P., Mahoney, W. J., and Osifchin, R. G., Science 273, 1690 (1996).10.1126/science.273.5282.1690Google Scholar
13. Brust, M., Bethell, D., Schiffrin, D. J., and Kiely, C. J., Adv. Mater. 7, 795 (1995).10.1002/adma.19950070907Google Scholar
14. Artemyev, M. V., Sperling, V., and Woggon, U., J. Appl. Phys. 81, 6975 (1997).10.1063/1.365261Google Scholar
15. Brust, M., Bethell, D., Kiely, C. J., and Schiffrin, D. J., Langmuir 14, 5425 (1998).10.1021/la980557gGoogle Scholar
16. Leatherdale, C. A., Kagan, C. R., Kastner, M. A., and Bawendi, M. G., Abstr. of ACS 213, 319-PHYS (1997).Google Scholar
17. Murray, C. B., Norris, D. J., and Bawendi, M. G., J. Amer. Chem. Soc. 15, 8706 (1993).10.1021/ja00072a025Google Scholar
18. Katari, J. E. Bowen, Colvin, V. L., and Alivisatos, A. P., J. Phys. Chem. 98,4109 (1994).10.1021/j100066a034Google Scholar
19. Kim, J. S., Granstrom, M., Friend, R. H., Johansson, N., Salaneck, W. R., Daik, R., Feast, W. J., and Cacialli, F., J. Appl. Phys. 84, 6859 (1998).10.1063/1.368981Google Scholar
20. Sze, S. M., Physics of Semiconductor Devices, 2nd Edition ed. (John Wiley & Sons, New York, 1981).Google Scholar