Hostname: page-component-cd9895bd7-q99xh Total loading time: 0 Render date: 2025-01-01T07:11:10.305Z Has data issue: false hasContentIssue false

Electrical Properties of Diamond MISFETs with Submicron-Sized Gate on Boron-Doped (111) Surface

Published online by Cambridge University Press:  01 February 2011

Takeyasu Saito
Affiliation:
tk-saito@aist.go.jp, National Institute of Advanced Industrial Science and Technology, AIST TC2, 1-1-1 Umezono, Tsukuba, Ibaraki, 305-8568, Japan
Kyung-ho Park
Affiliation:
kh-park@aist.go.jp, National Institute of Advanced Industrial Science and Technology, Japan
Kazuyuki Hirama
Affiliation:
hirama@kaw.comm.waseda.ac.jp, Waseda University, Japan
Hitoshi Umezawa
Affiliation:
hitoshi.umezawa@aist.go.jp, National Institute of Advanced Industrial Science and Technology, Japan
Mitsuya Satoh
Affiliation:
satoh.mitsuya@kaw.comm.waseda.ac.jp, Waseda University, Japan
Hiroshi Kawarada
Affiliation:
kawarada@waseda.jp, Waseda University, Japan
Zhi-Quan Liu
Affiliation:
LIU.Zhiquan@nims.go.jp, National Institute for Materials Science, Japan
Kazutaka Mitsuishi
Affiliation:
MITSUISHI.Kazutaka@nims.go.jp, National Institute for Materials Science, Japan
Hideyo Okushi
Affiliation:
h.okushi@aist.go.jp, National Institute of Advanced Industrial Science and Technology, Japan
Get access

Abstract

An H-terminated-surface conductive layer of B-doped diamond on a (111) surface was used to fabricate a metal insulator semiconductor field effect transistor (MISFET) using CaF2, SiO2 or Al2O3 gate insulators and a Cu-metal stacked gate. For a CaF2 gate, the maximum measured drain current (Idmax) was 240 mA/mm and the maximum transconductance (gm) was 70 mS/mm, and the cut-off frequency of 4 GHz was obtained. For a SiO2 gate, Idmax and gm were 75 mA/mm and 24 mS/mm, respectively, and for an Al2O3 gate, these characteristics were 86 mA/mm and 15 mS/mm, respectively. These values are among the highest reported DC and RF characteristics for a diamond homoepitaxial (111) MISFET.

Type
Research Article
Copyright
Copyright © Materials Research Society 2006

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Field, J. E., Properties of Diamond, Academic Press, London, 1979.Google Scholar
2. Fujimori, N. et al. , Jpn. J. Appl. Phys. 29 (1990) 824.Google Scholar
3. Koizumi, S. et al. , Appl. Phys. Lett. 71 (1997) 1065.Google Scholar
4. Kawarada, H. et al. , Appl. Phys. Lett. 65 (1994) 1563.Google Scholar
5. Kubovic, M. et al. , Diamond Relat. Mater. 13 (2004) 802.Google Scholar
6. Matsudaira, H. et al. , IEEE Electron Device Lett. EDL–25 (2004) 480.Google Scholar
7. Ri, S. G. et al. , Appl. Phys. Lett. submitted.Google Scholar
8. Ri, S. G. et al. , Presented in Diamond 2005 and Diamond Relat. Mater. submitted.Google Scholar
9. Robertson, J., J. Vac. Sci. Technol. B18 (2000) 1785.Google Scholar
10. Umezawa, H. et al. , Jpn. J. Appl. Phys. 39 (2000) L908.Google Scholar
11. Matsudaira, H. et al. , Diamond Relat. Mater. 12 (2003) 1814.Google Scholar
12. Kasu, M. et al. , Jpn. J. Appl. Phys. 43 (2004) L975.Google Scholar
13. Hirama, K. et al. , Jpn. J. Appl. Phys. submitted.Google Scholar
14. Umezawa, H. et al. , Diamond Relat. Mater. 10 (2001) 1743.Google Scholar
15. Alekov, A. et al. , Diamond Relat. Mater. 11 (2002) 382.Google Scholar
16. Gluche, P. et al. , IEEE Electron Device Lett. EDL–18 (1997) 547.Google Scholar
17. Umezawa, H. et al. , Jpn. J. Appl. Phys. 41 (2002) 2611.Google Scholar