Hostname: page-component-745bb68f8f-b6zl4 Total loading time: 0 Render date: 2025-01-15T06:47:18.331Z Has data issue: false hasContentIssue false

Electrical Properties of MFS-FETs using SrBi2 Ta2O9 Films Directly Grown on Si Substrates by Sol-Gel Method

Published online by Cambridge University Press:  10 February 2011

E Tokumitsu
Affiliation:
Precision & Intelligence Lab. Tokyo Institute of Technology, Midori-ku, Yokohama 226, Japan, tokumitu@pi.titech.ac.jp
G. Fujii
Affiliation:
Precision & Intelligence Lab. Tokyo Institute of Technology, Midori-ku, Yokohama 226, Japan, tokumitu@pi.titech.ac.jp
H. Ishiwara
Affiliation:
Precision & Intelligence Lab. Tokyo Institute of Technology, Midori-ku, Yokohama 226, Japan, tokumitu@pi.titech.ac.jp
Get access

Abstract

SrBi2Ta2O9(SBT) films have been prepared by the sol-gel technique on n-Si(100) substrates and nonvolatile memory operation of a metal-ferroelectric-semiconductor field effect transistor (MFSFET) using the SBT/Si structure has been demonstrated. Ploy-crystalline SBT films can be obtained on Si substrates and it is shown by the secondary ion mass spectrometry (SIMS) that the inter-diffusion between SBT and Si is suppressed even though high annealing temperature is required for the SBT film growth. Then the SBT/Si MFSFETs have been fabricated. Drain current - gate voltage characteristics clearly show hysteresis loops due to the ferroelectric nature of the SBT film. It is demonstrated that the drain current can be controlled by the “write” pulse, which was applied before the measurements, even at the same “read” gate voltage. Memory retention characteristics of SBT/Si MFSFETs are also presented.

Type
Research Article
Copyright
Copyright © Materials Research Society 1998

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Moll, J. L. and Tarui, Y., IEEE Trans. Electron Devices ED–10, 333 (1963).Google Scholar
2. Ishiwara, H., Jpn. J. Appl. Phys., 32 (1993) 442 Google Scholar
3. Tokumitsu, E., Itani, K., Moon, B. K., and Ishiwara, H. in Ferroelectric Thin Films IV, edited by Tuttle, B. A., Desu, S. B., Ramesh, R., Shiosaki, T. (Mat. Res. Soc. Symp. Proc. 361 Pittsburgh, PA, 1995) pp. 427432.Google Scholar
4. Shichi, Y., Tanimoto, S., Goto, T., Kuroiwa, K., Tarai, Y., Jpn. J. Appl. Phys. 33, 5172 (1994).Google Scholar
5. Tokumitsu, E., Nakamura, R., Ishiwara, H., IEEE Electron Device Letters 18, 160 (1997).Google Scholar
6. Nakao, Y., Nakamura, T., Kamisawa, A., and Takasu, H., Integrated Ferroelectrics 6, 23 (1995).Google Scholar
7. Lampe, D. R., Adams, D. A., Austin, M., Polinsky, M., Dzimianski, J., Sinharoy, S., Buhay, H., Brabant, P., and Liu, Y. M., Ferroelectrics 133, 61 (1992).Google Scholar
8. Aizawa, K., Ichiki, T., Okamoto, T., Tokumitsu, E., and Ishiwara, H., Jpn. J. Appl. Phys. 35, 1525(1996).Google Scholar
9. Mihara, T., Watanabe, H., Pazde Araujo, C. A., Jpn. J. Appl. Phys. 33, 3996 (1994).Google Scholar
10. Auciello, O., Integrated Ferroelectrics 15, 211 (1997).Google Scholar
11. Jones, R. E., Zurcher, P., Chu, P., Taylor, D. J., Zafar, S., Jiang, B. and Gillespie, S. J., Integrated Ferroelectrics 15, 199 (1997).Google Scholar
12. Koike, H., Otsuki, T., Kimura, T., Fukuma, M., Hayashi, Y., Maejima, Y., Amanuma, K., Tanabe, T., Matsuki, T., Saito, S., Takeuchi, T., Kobayashi, S., Kunio, T., Hase, T., Miyasaka, Y., Shohata, N., Takada, M., IEEE Int. Solid State Circuits Conf. San Francisco, February 1996.Google Scholar
13. Hirai, T., Fujisaki, Y., Nagashima, K., Koike, H., and Tarui, Y., Jpn. J. Appl. Phys. 36, 5908 (1997).Google Scholar
14. Lee, H. N., Kim, Y. T., Lee, C. W., Lim, M. H., and Kalkur, T. S., Extended Abstracts of 1997 Int. Conf. on Solid State Devices and Materials, Hamamatsu, 1997, pp. 382383.Google Scholar
15. Tokumitsu, E., Zama, H., and Ishiwara, H., Trans, of the Materials Research Society of Japan 20, 627 (1996).Google Scholar