Hostname: page-component-745bb68f8f-5r2nc Total loading time: 0 Render date: 2025-01-15T07:01:36.641Z Has data issue: false hasContentIssue false

Electrical Reliability of Cu and Low-K Dielectric Integration

Published online by Cambridge University Press:  10 February 2011

S. Simon Wong
Affiliation:
Center for Integrated Systems, Stanford University, CIS 202 MC 4070, Stanford, CA 94305
Alvin L. S. Loke
Affiliation:
Center for Integrated Systems, Stanford University, CIS 202 MC 4070, Stanford, CA 94305
Jeffrey T. Wetzel
Affiliation:
Advanced Products Research and Development Laboratory, Motorola, Inc., 3501 Ed Bluestein Boulevard, Austin, TX 78721
Paul H. Townsend
Affiliation:
The Dow Chemical Company, 1712 Building, Midland, MI 48674
Raymond N. Vrtis
Affiliation:
Sc humacher, 1969 Palomar Oaks Way, Carlsbad, CA 92009
Melvin P. Zussman
Affiliation:
HD MicroSystems, 334-127 Route 141 Murphy Road, Wilmington, DE 19880
Get access

Abstract

The recent demonstrations of manufacturable multilevel Cu metallization have heightened interest to integrate Cu and low-K dielectrics for future integrated circuits. For reliable integration of both materials, Cu may need to be encapsulated by barrier materials since Cu ions (Cu+) might drift through low-K dielectrics to degrade interconnect and device integrity. This paper addresses the use of electrical testing techniques to evaluate the Cu+ drift behavior of low-K polymer dielectrics. Specifically, bias-temperature stress and capacitance-voltage measurements are employed as their high sensitivities are well-suited for examining charge instabilities in dielectrics. Charge instabilities other than Cu+ drift also exist. For example, when low-K polymers come into direct contact with either a metal or Si, interface-related instabilities attributed to electron/hole injection are observed. To overcome these issues, a planar Cu/oxide/polymer/oxide/Si capacitor test structure is developed for Cu+ drift evaluation. Our study shows that Cu+ ions drift readily into poly(arylene ether) and fluorinated polyimide, but much more slowly into benzocyclobutene. A thin nitride cap layer can prevent the penetration.

Type
Research Article
Copyright
Copyright © Materials Research Society 1998

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

[1] Venketesan, S., Gelatos, A.V., Misra, V., Smith, B., Islam, R., Cope, J., Wilson, B., Tuttle, D., Cardwell, R., Anderson, S., Angyal, M., Bajaj, R., Capasso, C., Crabtree, P., Das, S., Farkas, J., Filipiak, S., Fiordalice, B., Freeman, M., Gilbert, P.V., Herrick, M., Jain, A., Kawasaki, H., King, C., Klein, J., Lii, T., Reid, K., Saaranen, T., Simpson, C., Sparks, T., Tsui, P., Venkatraman, R., Watts, D., Weitzman, E.J., Woodruff, R., Yang, I., Bhat, N., Hamilton, G., and Yu, Y., Proc. IEEE Int'l Electron Device Meeting, 769772 (1997).Google Scholar
[2] Edelstein, D., Heidenreich, J., Goldblatt, R., Cote, W., Uzoh, C., Lustig, N., Roper, P., McDevitt, T., Motsiff, W., Simon, A., Dukovic, J., Wachnik, R., Rathore, H., Schulz, R., Su, L., Luce, S., and Slattery, J., Proc. IEEE Int'l Electron Device Meeting, 773776 (1997).Google Scholar
[3] Rohrer, N., Akrout, C., Canada, M., Cawthron, D., Davari, B., Floyd, R., Geissler, S., Goldblatt, R., Houle, R., Kartschoke, P., Kramer, D., McCormick, P., Salem, G., Schulz, R., Su, L., and Whitney, L., Proc. IEEE Int'l Solid-State Circuits Conf., 240241 (1998).Google Scholar
[4] B. Luther White, J.F., Uzoh, C., Cacouris, T., Hummel, J., Guthrie, W., Lustig, N., Greco, S., Greco, N., Zuhoski, S., Agnello, P., Colgan, E., Mathad, S., Saraf, L., Weitzman, E.J., Hu, C.K., Kaufman, F., Jaso, M., Buchwalter, L.P., Reynolds, S., Smart, C., Edelstein, D., Baran, E., Cohen, S., Knoedler, C.M., Malinowski, J., Horkans, J., Deligianni, H., Harper, J., Andricacos, P.C., Paraszczak, J., Pearson, D.J., and Small, M., Proc. VLSI Multilevel Interconnection Conf., 1521 (1993).Google Scholar
[5] Zielinski, E.M., Russell, S.W., List, R.S., Wilson, A.M., Jin, C., Newton, K.J., Lu, J.P., Hurd, T., Hsu, W.Y., Cordasco, V., Gopikanth, M., Korthuis, V., Lee, W., Cerny, G., Russell, N.M., Smith, P.B., O‘Brien, S., and Havemann, R.H., Proc. IEEE Int'l Electron Device Meeting, 936938 (1997).Google Scholar
[6] Saraswat, K.C. and Mohammadi, F., IEEE Trans. Electron Devices ED–29 (4), 645650 (1982).Google Scholar
[7] Ida, J., Yoshimaru, M., Usami, T., Ohtomo, A., Shimokawa, K., Kita, A., and Ino, M., Proc. IEEE Symp. VLSI Technology, 5960 (1994).Google Scholar
[8] Oh, S.-Y. and Chang, K.-J., IEEE Circuits and Devices 11 (1), 1621 (1995).Google Scholar
[9] Bohr, M.T., Proc. IEEE Int'l Electron Device Meeting, 241244 (1995).Google Scholar
[10] Cho, J.S.H., Kang, H.-K., Asano, l., and Wong, S.S., Proc. IEEE Int'l Electron Device Meeting, 297300 (1992).Google Scholar
[11] Shacham-Diamand, Y., Dedhia, A., Hoffstetter, D., and Oldham, W.G., J. Electrochem. Soc. 140 (8), 24272432, (1993).Google Scholar
[12] McBrayer, J.D., Swanson, R.M., and Sigmon, T.W., J. Electrochem. Soc. 133 (6), 12421246 (1986).Google Scholar
[13] Cho, J.S.H., Kang, H.-K., Ryu, C., and Wong, S.S., Proc. IEEE Int'l Electron Device Meeting, 265268 (1993).Google Scholar
[14] Chiang, C., Tzeng, S.-M., Raghavan, G., Villasol, R., Bai, G., Bohr, M., Fujimoto, H., and Fraser, D.B., Proc. VLSI Multilevel Interconnection Conf., 414420 (1994).Google Scholar
[15] Raghavan, G., Chiang, C., Anders, P.B., Tzeng, S.-M., Villasol, R., Bai, G., Bohr, M., and Fraser, D.B., Thin Solid Films 262, 168176 (1995).Google Scholar
[16] Loke, A.L.S., Ryu, C., Yue, C.P., Cho, J.S.H., and Wong, S.S., IEEE Electron Device Lett. 17(12), 549551 (1996).Google Scholar
[17] Vrtis, R.N., Heap, K.A., Burgoyne, W.F., and Robeson, L.M., Proc. VLSI Multilevel Interconnection Conf., 620622 (1997).Google Scholar
[18] Auman, B.C. in Low-Dielectric Constant Materials, edited by Lu, T.-M., Murarka, S.P., Kuan, T.-S., and Ting, C.H. (Mater. Res. Soc. Proc. 381, Pittsburgh, PA, 1995), pp. 1929.Google Scholar
[19] Mills, M., Dibbs, M., Martin, S., and Townsend, P., Proc. Dielectrics for VLSI/ULSI Multilevel Interconnection Conf., 269275 (1995).Google Scholar
[20] Wetzel, J.T., Lii, Y.T., Filipiak, S.M., Nguyen, B.-Y., Travis, E.O., Fiordalice, R.W., Winkler, M.E., Lee, C.C., and Peschke, J., in Low-Dielectric Constant Materials, edited by Lu, T.-M., Murarka, S.P., Kuan, T.-S., and Ting, C.H. (Mater. Res. Soc. Proc. 381, Pittsburgh, PA, 1995), pp. 217228.Google Scholar
[21] LeGoues, F.K., Silverman, B.D., and Ho, P.S., J. Vac. Sci. Technology A 6 (4), 22002204 (1988).Google Scholar
[22] Samuelson, G., in Polymer Materials for Electronic Applications, edited by Feit, E.D. and Wilkins, C.W. Jr, (Amer. Chem. Soc. Symp. Series 184, Washington, D.C.,1982) pp. 93106.Google Scholar
[23] Zhang, X., Dabral, S., Wang, B., and McDonald, J.F., Proc. VLSI Multilevel Interconnection Conf., 104110 (1995).Google Scholar
[24] Brown, G.A., in Polymer Materials for Electronic Applications, edited by Feit, E.D. and Wilkins, C.W., Jr., (Amer. Chem. Soc. Symp. Series 184, Washington, D.C.,1982) pp. 151169.Google Scholar
[25] Smith, F.W., Neuhaus, H.J., Senturia, S.D., Feit, Z., Day, D.R., and Lewis, T.J., J. Electronic Materials 16 (1), 93106 (1987).Google Scholar
[26] Lan, J.-H., Chou, T.-K., Chiang, C.-S., Fouxel, F.-X., Radler, M.J., and Kanicki, J., presented at the 1997 MRS Spring Meeting, San Francisco, CA, 1997 (unpublished).Google Scholar
[27] Christen, T., Physical Rev. B56 (7), 37723778 (1997).Google Scholar
[28] Gupta, D., Materials Chemistry and Physics 41, 199205 (1995).Google Scholar
[29] Faupel, F., Phys. Stat. Sol. (a) 134, 959 (1992).Google Scholar
[30] Zhang, X., private communication.Google Scholar
[31] Samuelson, G. and Lytle, S., J. Electrochem. Soc. 131 (11), 27172720 (1984).Google Scholar
[32] Ralston, A.R.K., Gaynor, J.F., Singh, A., Le, L.V., Havemann, R.H., Piano, M.A., Cleary, T.J., Wing, J.C., and Kelly, J., Proc. IEEE Symp. VLSI Technology, 8182 (1997).Google Scholar
[33] Loke, A.L.S., Wetzel, J.T., Stankus, J.J., Angyal, M.S., Mowry, B.K., and Wong, S.S., IEEE Electron Device Lett. 19 (6), (1998).Google Scholar
[34] Snow, E.H. and Deal, B.E., J. Electrochem Soc. 113 (3), 263269 (1966).Google Scholar
[35] Loke, A.L.S., Wetzel, J.T., Ryu, C., Lee, W.-J., and Wong, S.S., Proc. IEEE Symp. VLSI Technology, (1998).Google Scholar