Hostname: page-component-745bb68f8f-g4j75 Total loading time: 0 Render date: 2025-01-15T07:10:55.607Z Has data issue: false hasContentIssue false

Electrochemical and Chemical Deposition of II-VI Semiconductors in Porous Silicon

Published online by Cambridge University Press:  15 February 2011

R. Herino
Affiliation:
Laboratoire de Spectrométrie Physique, Université Joseph Fourier de Grenoble 1 - CNRS (UMR 5588), BP 87, 38402 St Martin d'Hères, France
M. Gros-Jean
Affiliation:
Laboratoire de Spectrométrie Physique, Université Joseph Fourier de Grenoble 1 - CNRS (UMR 5588), BP 87, 38402 St Martin d'Hères, France
L. Montes
Affiliation:
Laboratoire de Spectrométrie Physique, Université Joseph Fourier de Grenoble 1 - CNRS (UMR 5588), BP 87, 38402 St Martin d'Hères, France
D. Lincot
Affiliation:
Ecole Nationale Supérieure de Chimie de Paris, 11 rue P. et M. Curie, 75231 Paris Cedex 05, France.
Get access

Abstract

The introduction of II-VI semiconductor compounds into porous silicon layers has been investigated in order to obtain transparent and conducting contacts with the inner surface of the material. CdTe and ZnSe have been electrodeposited cathodically on n type nanoporous electrodes from acidic solutions containing the metallic cations and dissolved oxides of selenium or tellurium. CdS incorporation into p-type porous silicon has been achieved by chemical bath deposition, from solutions containing cadmium complexes and thioacetamid as a sulfur donor. Characterization of the deposits has been performed by SEM observations, X-ray analysis and RBS. Results confirm the penetration of the compounds into the porous films, with small to strong concentration gradients in thickness depending on the deposition method. After deposition and sample drying, the luminescence of CdTe embedded layers has almost disappeared, whereas those containing ZnSe and CdS show a photoluminescence efficiency which is not severely degraded.

Type
Research Article
Copyright
Copyright © Materials Research Society 1997

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1.Canham, L.T., Appl. Phys. Lett. 57, 10461048 (1990)Google Scholar
2.Halimaoui, A., Bomchil, G., Oules, C., Bsiesy, A., Gaspard, F., Hérino, R., Ligeon, M., Muller, F., Appl. Phys. Lett. 59, 304306 (1991)Google Scholar
3.Steiner, P., Kozlowski, F., Lang, W., Thin Sol. Films 225, 4951 (1995)Google Scholar
4.Loni, A., Simons, A.J., Cox, T.I., Calcott, P.D.J., Canham, L.T., Electron. Lett. 31, 12881289 (1995)Google Scholar
5.Hérino, R., J. Chim. Phys. 93, 641649 (1996)Google Scholar
6.Oguro, T., Koyoma, H., Ozaki, T., Koshida, N., J. Appl. Phys., in press (1997)Google Scholar
7.Koshida, N., Koyama, H., Yamamoto, Y., Collins, G.J., Appl. Phys. Lett. 63, 2655–57 (1993)Google Scholar
8.Bsiesy, A., Nicolau, Y.F., Ermolieff, A., Muller, F., Gaspard, F., Thin Sol. Films 255, 4348 (1995)Google Scholar
9.Jeske, M., Schultze, J.W., Thönissen, M., Münder, H., Thin Sol. Films 255, 6366 (1995)Google Scholar
10.Pandey, R.K., Sahu, S.N., Chandra, S., Handbook of Semiconductor deposition, (Marcel Dekker, Inc., New York, 1996), pp 2756Google Scholar
11.Ortega-Borges, R., Lincot, D., J. Electrochem. Soc. 140, 34643473 (1993)Google Scholar