Hostname: page-component-cd9895bd7-q99xh Total loading time: 0 Render date: 2025-01-01T12:41:56.307Z Has data issue: false hasContentIssue false

Electromigration of Cu Interconnect Lines Prepared by a Plasma-based Etch Process

Published online by Cambridge University Press:  01 February 2011

Guojun Liu
Affiliation:
guojun@tamu.edu, Texas A&M University, Thin Film Nano & Microelectronics Research Laboratory, 235 J. E. Brown Engineering Bldg., MS 3122, College Station, TX, 77843-3122, United States
Yue Kuo
Affiliation:
yuekuo@tamu.edu, Texas A&M University, Thin Film Nano & Microelectronics Research Laboratory, 235 J. E. Brown Eng. Bldg., MS 3122, TAMU, College Station, TX, 77843-3122, United States, 979-845-9807, 979-458-8836
Get access

Abstract

The electromigration performance of Cu lines patterned by a Cl2 plasma-based etch process has been studied with the accelerated isothermal lifetime test. An electromigration activation energy of 0.6 eV and a current density acceleration exponent of 2.7 were obtained. Both the copper-silicon nitride cap layer interface and the copper grain boundary were active diffusion paths. The applied mechanical bending stress changed the electromigration void distribution in the film, which leaded to the shorter lifetime and lower activation energy.

Type
Research Article
Copyright
Copyright © Materials Research Society 2008

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

[1] Hau-Riege, C. S., Microelectronics Reliability, 44, 195205 (2004).Google Scholar
[2] Lee, S., Kuo, Y., J. Electrochem. Soc., 148, G524529 (2001).Google Scholar
[3] Kuo, Y., Lee, S., Appl. Phys. Lett., 78, 1002 (2001).Google Scholar
[4] Hu, C.-K., Gignac, L., Rosenberg, R., Microelectronics Reliability, 46, 213231 (2006).Google Scholar
[5] Lloyd, J. R., Clement, J. J., Thin Solid Films, 262, 135141 (1995).Google Scholar
[6] Lloyd, J. R., Clemens, J., Snede, R., Microelectronics Reliability 39, 15951602 (1999).Google Scholar
[7] Proost, J., Hirato, T., Furuhara, T., Maex, K., Celis, J. P., J. Appl. Phys., 87, 27922802 (2000).Google Scholar
[8] Vairagar, A. V., Mhaisalkar, S. G., Krishnamoorthy, A., Microelectronics Reliability, 44, 747754 (2004).Google Scholar
[9] Filippi, R. G., Gribelyuk, M. A., Joseph, T., etc, Thin Solid Films, 388, 303314 (2001).Google Scholar
[10] Yokogawa, S., Okada, N., Kakuhara, Y., Takizawa, H., Microelectronics Reliability, 41, 14091416 (2001).Google Scholar
[11] Hu, C.-K., Thin Solid Films, 260, 124134 (1995).Google Scholar
[12] Hu, C.-K., Harper, J. M. E., Mater. Chem. Phys., 52, 516 (1998).Google Scholar
[13] Lee, T. C., Ruprecht, M., Tibel, D., Sullivan, T. D., Wen, S., IEEE International Reliability physics symposium proceedings, 40, 327335 (2002).Google Scholar
[14] Lin, M. H., Lin, Y. L., Chang, K. P., Su, K. C., Wang, T., Microelectronics Reliability, 45, 10611078 (2005).Google Scholar
[15] Baldini, G. L., Munari, I. D., Scorzoni, A., Fantini, F., Microelectronics Reliability, 33, 17791805 (1993).Google Scholar
[16] Reimbold, G., Sicardy, O., Arnaud, L., Fillot, F., Torres, J., IEDM, 745748 (2002).Google Scholar
[17] Sanchez, J. E. Jr, McKnelly, L. T., Morris, J. W. Jr, J. Electron. Mater., 19, 12131220 (1990).Google Scholar