Hostname: page-component-745bb68f8f-5r2nc Total loading time: 0 Render date: 2025-01-15T06:43:36.206Z Has data issue: false hasContentIssue false

Energetic Materials in Ceramics Synthesis

Published online by Cambridge University Press:  15 February 2011

J. J. Kingsley
Affiliation:
Pacific Northwest Laboratory, Richland, WA 99352
L. R. Pederson
Affiliation:
Pacific Northwest Laboratory, Richland, WA 99352
Get access

Abstract

Combustion of a proper combination of an oxidizer and a fuel can produce the exothermicity required for the simultaneous synthesis of oxide ceramic powders. Oxidizers include metal nitrates, ammonium nitrate, and ammonium perchlorate, while urea, carbohydrazide, glycine and others have been used successfully as fuels. Combustion methods are particularly well-suited to producing multicomponent metal oxides, yielding compositionally homogeneous, fine particles with low impurity content. Organic fuels, particularly those containing nitrogen, also serve as a complexant in the precursor, which inhibits inhomogeneous precipitation from occurring prior to combustion. The exothermic redox decomposition of these oxidizer-fuel mixtures is initiated at low temperatures, usually <250°C. Properties of the products are influenced by the nature of the fuel and the oxidizer/fuel ratio. Many technologically important oxide ceramics have been produced by these methods.

Type
Research Article
Copyright
Copyright © Materials Research Society 1993

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Kingsley, J. J. and Patil, K. C., Materials Letters, 6(11,12), 427432 (1988).CrossRefGoogle Scholar
2. Kingsley, J. J., Ph. D (Thesis), Indian Institute of Science, 1989.Google Scholar
3. Gopi Chandran, R. and Patil, K. C., Materials Letters, 10(6), 291295 (1990).CrossRefGoogle Scholar
4. Kingsley, J. J. and Patil, K. C., Ceramic Transactions, Vol.12, Ceramic Powder Science-III, Ed. Messing, G. L., Hirano, S. and Hausner, H. (The American Ceramic Society, 1990) pp.217223.Google Scholar
5. Kingsley, J. J., Suresh, K. and Patil, K. C., J. Mater. Sci., 25, 13051312 (1990).Google Scholar
6. Sundar Manoharan, S., Kumar, N. R. S., and Patil, K. C., Mat. Res. Bull., 25, 731738 (1990).Google Scholar
7. Gopi Chandran, R. and Patil, K. C., Materials Letters, 12, 437441, (1992).Google Scholar
8. Sundar Manoharan, S. and Patil, K. C., J. Am. Ceram. Soc., 75(4), 10121015 (1992).CrossRefGoogle Scholar
9. Suresh, K., Kumar, N. R. S., and Patil, K. C., Adv. Mater., 3(3), 148150 (1991).Google Scholar
10. Kingsley, J. J., Suresh, K. and Patil, K. C., J. Solid State Chem., 87, 435442 (1990).Google Scholar
11. Chick, L. A., Bates, J. L., Pederson, L. R. and Kissinger, H. E., in: Proc. 1st. Intern. Symp. on solid Oxide Fuel Cells, ed. Singhal, S. C. (Electrochemical Society, Pennington, NJ, 1989) pp. 170179.Google Scholar
12. Chick, L. A., Pederson, L. R., Maupin, G. D., Bates, J. L., Thomas, L. E. and Exarhos, G. J., Materials Letters, 10(1,2), 612 (1990).Google Scholar
13. Lambert Bates, J., Chick, L. A. and Weber, W. J., Solid State Ionics, 52, 235242 (1992).CrossRefGoogle Scholar
14. Bakhman, N. N., Combust. Explosion. Shock Waves, 4, 9 (1968).Google Scholar
15. Jain, S. R. and Adiga, K. C., Combustion and Flame, 40, 7179 (1981).Google Scholar
16. Cotton, F. A. and Wilkinson, G., Advanced Inorganic Chemistry, 4th ed., Wiley-Interscience, New York, 1980, p. 689.Google Scholar