Hostname: page-component-cd9895bd7-gbm5v Total loading time: 0 Render date: 2025-01-01T04:50:53.105Z Has data issue: false hasContentIssue false

Engineered Solder-Directed Self-Assembly Across Length Scales

Published online by Cambridge University Press:  01 February 2011

Robert Knuesel
Affiliation:
knue0010@umn.edu, University of Minnesota, Department of Electrical and Computer Engineering, 200 Union Street SE, Minneapolis MN 55455, United States
Shameek Bose
Affiliation:
hjacobs@umn.edu, University of Minnesota, Electrical and Computer Engineering, 200 Union St. SE, Minneapolis, MN, 55455, United States
Wei Zheng
Affiliation:
shameek@umn.edu, University of Minnesota, Department of Electrical and Computer Engineering, 200 Union Street SE, Minneapolis, MN, 55455, United States
Heiko O Jacobs
Affiliation:
zhen0044@umn.edu, University of Minnesota, Department of Electrical and Computer Engineering, 200 Union Street SE, Minneapolis, MN, 55455, United States
Get access

Abstract

We report on recent progress in the directed self-assembly of discrete inorganic semiconductor device components. Different from prior research, the goal is to enable the integration of increasingly small dies while supporting unique-angle orientation and contact pad registration. The process is based on the reduction of surface free energy between liquid solder coated areas on the substrate and metal-coated binding sites on the semiconductor dies. Recent advances include flip-chip assembly with unique angular orientation accomplished using “two-element” docking sites that contain pedestals that act as chaperones for the solder directed assembly to take place. The scale reduction to 20 μm sized components involves the use of a liquid-liquid interface to concentrate component delivery and speed up the self-assembly process to prevent oxidative dissolution of the solder sites prior to completion.

Type
Research Article
Copyright
Copyright © Materials Research Society 2007

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

[1] Cohn, M. B., Bohringer, K. F., Noworolski, J. M., Singh, A., Keller, C. G., Goldberg, K. Y., Howe, R. T., Proceedings of SPIE 1998, 3512, 2.Google Scholar
[2] Clark, T. D., Tien, J., Duffy, D. C., Paul, K. E., Whitesides, G. M., Journal of the American Chemical Society 2001, 123, 7677.Google Scholar
[3] Fearing, R. S., Proceedings 1995, 212.Google Scholar
[4] Zhang, S., Nature Biotechnology 2003, 21, 1171.Google Scholar
[5] Whitesides, G. M., Grzybowski, B., Science 2002, 295, 2418.Google Scholar
[6] Yeh, H. J. J., Smith, J. S., IEEE Photonics Technology Letters 1994, 6, 706.Google Scholar
[7] Smith, J. S., Yeh, H. J. J., US Patent 1998, 5,824,186.Google Scholar
[8] Gracias, D. H., Tien, J., Breen, T. L., Hsu, C., Whitesides, E. M., Science 2000, 289, 1170.Google Scholar
[9] Boncheva, M., Gracias, D. H., Jacobs, H. O., Whitesides, G. M., Proc. Natl. Acad. Sci. USA 2002, 99, 4937.Google Scholar
[10] Jacobs, H. O., Tao, A. R., Schwartz, A., Gracias, D. H., Whitesides, G. M., Science 2002, 296, 323.Google Scholar
[11] Srinivasan, U., Liepmann, D., Howe, R. T., Journal of Microelectromechanical Systems 2001, 10, 17.Google Scholar
[12] Srinivasan, U., Helmbrecht, M. A., Rembe, C., Muller, R. S., Howe, R. T., IEEE Journal of Selected Topics in Quantum Electronics 2002, 8, 4.Google Scholar
[13] Böhringer, K. F., Srinivasan, U., Howe, R. T., Interlaken, Switzerland, 2001.Google Scholar
[14] Zheng, W., Buhlmann, P., Jacobs, H. O., Proc. Natl. Acad. Sci. USA 2004, 101, 12814.Google Scholar
[15] Zheng, W., Jacobs, H. O., Applied Physics Letters 2004, 85, 3635.Google Scholar
[16] Zheng, W., Jacobs, H. O., Advanced Functional Materials 2005, 15, 732.Google Scholar
[17] Patolsky, F., Zheng, G., Lieber, C. M., Analytical Chemistry 2006, 78, 4260.Google Scholar
[18] Jacobs, H. O., Wei, Z., USA, Provisional Application, March 2006.Google Scholar
[19] Barry, C. R., Jacobs, H. O., Nano Letters 2006, 6, 2790.Google Scholar
[20] Xiong, X., Hanein, Y., Fang, J., Wang, Y., Wang, W., Schwartz, D. T., Bohringer, K. F., Journal of Microelectromechanical Systems 2003, 12, 117.Google Scholar
[21] Stauth, S. A., Parviz, B. A., Proceedings of the National Academy of Sciences of the United States of America 2006, 103, 13922.Google Scholar