Hostname: page-component-cd9895bd7-hc48f Total loading time: 0 Render date: 2025-01-05T02:37:49.987Z Has data issue: false hasContentIssue false

Epitaxial Single Crystalline Ferrite Films for High Frequency Applications

Published online by Cambridge University Press:  15 February 2011

Y. Suzuki
Affiliation:
AT&T Bell Laboratories, Murray Hill, NJ 07974.
R. B. Van Dover
Affiliation:
AT&T Bell Laboratories, Murray Hill, NJ 07974.
V. Korenivski
Affiliation:
AT&T Bell Laboratories, Murray Hill, NJ 07974.
D. Werder
Affiliation:
AT&T Bell Laboratories, Murray Hill, NJ 07974.
C. H. Chen
Affiliation:
AT&T Bell Laboratories, Murray Hill, NJ 07974.
R. J. Felder
Affiliation:
AT&T Bell Laboratories, Murray Hill, NJ 07974.
Get access

Abstract

The successful growth of single crystal ferrites in thin film form is an important step towards their future incorporation into integrated circuits operating at microwave frequencies. We have successfully grown high quality single crystalline spinel ferrite thin films of (Mn, Zn)Fe2O4 and CoFe2O4 on (100) and (110) SrTiO3 and MgAl2O4 at low temperature. These ferrite films are buffered with spinel structure layers that are paramagnetic at room temperature. In contrast to ferrite films grown directly on the substrates, ferrite films grown on buffered substrates exhibit excellent crystallinity and bulk saturation magnetization values, thus indicating the importance of lattice match and structural similarity between the film and the immediately underlying layer. X-ray, RBS, AFM and TEM analysis provide a consistent picture of the structural properties of these ferrite films. We then use this technique to grow exchange-coupled bilayers of single crystalline CoFe2O4 and (Mn, Zn)Fe2O4. In these bilayers, we observe strong exchange coupling across the interface that is similar in strength to the exchange coupling in the individual layers.

Type
Research Article
Copyright
Copyright © Materials Research Society 1996

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1 Williams, C.M., Chrisey, D.B., Lubitz, P., Grabowski, K.S. and Cotell, C.M., J. Appl. Phys. 75 1676 (1994).Google Scholar
2. Dover, R.B. van, Venzke, S., Gyorgy, E.M., Siegrist, T., Phillips, J.M., Marshall, J.H. and Felder, R. J., Mat. Res. Soc. Symp. Proc. 341 41 (1994).Google Scholar
3. Zhou, Z.-J. and Yan, J.J., J. Magnetism and Magn. Mat. 115 87 (1992) and references therein.Google Scholar
4. Margulies, D. T., Parker, F. T., Spada, F. E. and Berkowitz, A. E., Mat. Res. Soc. Symp. Proc. 341 53 (1994).Google Scholar
5. Suzuki, Y., Dover, R.B. van, Gyorgy, E. M., Phillips, J. M., Korenivski, V., Werder, D. J., Chen, C. H., Cava, R. J., Krajewski, J. J., Peck, W. F. and Do, K. B., submitted for publication.Google Scholar
6. Suzuki, Y., Dover, R. B. van, Gyorgy, E. M., Phillips, Julia M., Korenivski, V., Werder, D. J., Chen, C.H. and Felder, R. J., submitted for publication.Google Scholar
7. Zaag, P. J. van der, Wolf, R. M., Ball, A. R., Bordel, C., Feiner, L.F. and Jungblut, R., J. Mag. Magn. Mat. 148 346 (1995).Google Scholar
8. Bozorth, R. M., “Ferromagnetism,” D. van Nostrand Co., Inc., Princeton, New Jersey, 1951, p.582.Google Scholar
9. Cullity, B. D., “Introduction to Magnetic Materials,”Addison-Wesley Publishing Co., Reading, MA, 1972, pp. 214225.Google Scholar
10. Suzuki, Y., Dover, R. B. van, Gyorgy, E. M., Phillips, Julia M., Felder, R. J., submitted for publication.Google Scholar
11. for example Hempstead, R. D., Krongelb, S. and Thompson, D. A., IEEE Trans. Mag. MAG-14 521 (1978).Google Scholar
12. Goto, E., Hayashi, N., Miyashita, T. and Nakagawa, K., J. App. Phys. 36 2951 (1965).Google Scholar