Hostname: page-component-cd9895bd7-jn8rn Total loading time: 0 Render date: 2025-01-01T04:05:01.187Z Has data issue: false hasContentIssue false

Erbium-doped GaN epilayers synthesized by metal-organic chemical vapor deposition

Published online by Cambridge University Press:  01 February 2011

C. Ugolini
Affiliation:
cugolini@phys.ksu.edu, Kansas State University, Physics, Cardwell Hall, Room 319, Manhattan, KS, 66506, United States
N. Nepal
Affiliation:
neeraj@phys.ksu.edu, Kansas State University, Department of Physics, Manhattan, KS, 66506, United States
J. Y. Lin
Affiliation:
jylin@phys.ksu.edu, Kansas State University, Department of Physics, Manhattan, KS, 66506, United States
H. X. Jiang
Affiliation:
jiang@phys.ksu.edu, Kansas State University, Department of Physics, Manhattan, KS, 66506, United States
J. M. Zavada
Affiliation:
john.zavada@us.army.mil, U.S. Army Research Office, Durham, NC, 27709, United States
Get access

Abstract

GaN is an excellent host for Er due to the low thermal quenching of radiative intra-4f Er3+ transitions at 1.54 μm. Er doped GaN structures are promising for emitters and amplifiers operating at the main telecommunication wavelength. In recent studies, Er doped III-Nitride epilayers were obtained by ion implantation, hydride vapor phase epitaxy (HVPE), metal organic molecular beam epitaxy (MOMBE), or molecular beam epitaxy (MBE). But, in-situ Er doping of III-nitride epilayers has not been achieved by metal organic chemical vapor deposition (MOCVD), mostly due to the low vapor pressure and lack of suitable, metal organic Er sources. Since n and p type III-nitride epilayers with excellent electrical properties and high crystalline quality are easily achieved by the MOCVD method, in-situ incorporation of Er into III-nitride materials by MOCVD is a very attractive method for creating highly efficient optoelectronic devices operating at 1.54 μm. We report on the experimental study and synthesis of Er doped GaN by MOCVD. Photoluminescence (PL) with above and below bandgap excitation energies were employed to study the optical properties of Er doped GaN. PL spectra of these Er doped layers exhibit a strong 1.54 μm emission, corresponding to the intra-4f transition of the 4I13/2 (first excited state) to the 4I15.2 (ground state) of Er3+. The mechanisms of optical transitions involving different excitation energies, and potential applications of Er doped GaN structures in the communication wavelength are also discussed.

Type
Research Article
Copyright
Copyright © Materials Research Society 2007

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Zavada, J. M. and Zhang, Dahua, Solid-State Electronics 38, 1285 (1995).Google Scholar
2. Brown, M. R., Cox, A. F. J., Shand, W. A., and Williams, J. M.; Advances in Quantum Electronics 2, 69, (1974).Google Scholar
3. Ennen, H., Schneider, J., Pomrenke, G., and Axmann, A.,Appl. Phys. Lett. 43, 943 (1983).Google Scholar
4. Favennec, P. N., L'Haridon, H., Salvi, M., Moutonnet, D., and LeGuillou, Y., Electron. Lett. 25, 718 (1989).Google Scholar
5. Wilson, R. G., Schwartz, R. N., Abernathy, C. R., Pearton, S. J., Newman, N., Rubin, M., Fu, T., and Zavada, J. M., Appl. Phys. Lett. 65, 992 (1994).Google Scholar
6. Torvik, J. T., Feuerstein, R. J., Pankove, J. I., Qiu, C. H., and Namavar, F., Appl. Phys.Lett. 69, 2098 (1996).Google Scholar
7. Kim, S., Rhee, S. J., Turnbull, D. A., Reuter, E. E., Li, X., Coleman, J. J., and Bishop, S. G., Appl. Phys. Lett. 71, 231 (1997).Google Scholar
8. Hansen, D. M.,Zhang, R., Perkins, N. R., Safvi, S., Zhang, L., Bray, K. L., and Kuech, T. F., Appl. Phys. Lett. 72, 1244 (1998).Google Scholar
9. MacKenzie, J. D., Abernathy, C. R., Pearton, S. J., Hömmerich, U., Seo, J. T., Wilson, R. G., and Zavada, J. M., Appl. Phys. Lett. 72, 2710 (1998).Google Scholar
10. Steckl, A. J., Garter, M., Birkhahn, R. and Scofield, J., Appl. Phys. Lett. 73, 2450 (1998).Google Scholar
11. Garter, M., Scofield, J., Birkhahn, R., and Steckl, A. J., Appl. Phys. Lett. 74, 182 (1999).Google Scholar
12. Birkhahn, R. H., Hudgins, R., Lee, D. S., Lee, B.K. and Steckl, A. J., Saleh, A.,G.Wilson, R., Zavada, J. M., MRS Internet J. Nitride Semicond. Res. 4S1, G3.80 (1999).Google Scholar
13. Steckl, A. J., Heikenfeld, J., Garter, M., Birkhahn, R., and Lee, D. S., Compound Semiconductor, 6(1), January/February, 2000.Google Scholar
14. Zavada, J. M., Jin, S. X., Nepal, N., Jiang, H. X., Lin, J. Y., Chow, P., and Hertog, B., Appl. Phys. Lett. 84, 1061 (2004).Google Scholar
15. Son, C. S., Kim, S., Kim, Y. H., Han, I. K. and Kim, Y. T., Wakahara, A., Choi, I. H., Lopez, H. C., Journal of the Korean Physical Society 45, 955 (2004).Google Scholar
16. Nakamura, Shuji, Fasol, Gerhard, The blue laser diode: GaN based light emitters and lasers (Springer, Berlin, 1997), pp. 201216.Google Scholar
17. Ugolini, C., Nepal, N., Lin, J. Y., Jiang, H. X., and Zavada, J. M., Appl. Phys. Lett. 89, 151903 (2006).Google Scholar
18. Wu, X., Hommerich, U., MacKenzie, J.D., Abernathy, C.R., Pearton, S.J., Schwartz, R., Wilson, R.G., and Zavada, J.M., Appl. Phys. Lett. 70, 2126 (1997).Google Scholar