Hostname: page-component-745bb68f8f-5r2nc Total loading time: 0 Render date: 2025-01-15T01:20:57.606Z Has data issue: false hasContentIssue false

Evaluation of The Long-Term Stability of Passive Corrosion On The Drip Shield and Waste Package Under Yucca Mountain Conditions

Published online by Cambridge University Press:  21 March 2011

D.W. Shoesmith*
Affiliation:
Department of ChemistryUniversity of Western Ontario London, Ontario N6A 5B7, Canada
Get access

Abstract

Possible long term corrosion scenarios for the engineered barriers proposed for the Yucca Mountain (Nevada, USA) repository are reviewed.

Introduction:

The materials proposed for the engineered barriers in the Yucca Mountain repository (Nevada, USA), Alloy-22 for the waste packages (WP) and titanium Grade-7 (Ti-7) for the drip shield (DS), appear unlikely to suffer localized corrosion (LC) and have very low passive corrosion (PC) rates (1–3). Since environmental conditions will become more benign as temperatures decline and aqueous environments become more dilute (4), this leads to the prediction of exceedingly long waste package lifetimes. In this review, possible corrosion scenarios are discussed in the context of the anticipated evolution in the repository environment.

Type
Research Article
Copyright
Copyright © Materials Research Society 2002

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. CRWMS M&O 1999. General Corrosion and Localized Corrosion of the Waste package Outer Barrier. ANL-EBS-MD-000003 REV00.Google Scholar
2. CRWMS M&O 2000. General Corrosion and Localized Corrosion of the Drip Shield. ANLEBS-MD-000004-REV00.Google Scholar
3. CRWMS M&O 1999. WAPDEG Analysis of Waste Package and Drip Shield Degradation. ANL-EBS-PA-000001 REV00.Google Scholar
4. Rosenberg, N.D., Gdowski, G.E. and Knauss, K.G., Lawrence Livermore Nat. Lab Report, UCRL-JC-137818 (2000).Google Scholar
5. CRWMS M&O. Yucca Mountain Science and Engineering Report. DOE/RW-0539 (2001).Google Scholar
6. Drever, J.I.. The Geochemistry of Natural Waters, Prentice-Hall Inc., 1997.Google Scholar
7. Shoesmith, D.W., Atomic Energy of Canada LtReport, d., AECL-12089 (2000).Google Scholar
8. Fontana, M.G., Corrosion Engineering, McGraw-Hill Inc., Toronto (1986)Google Scholar
9. Shrier, L.L., Jarman, R.A. and Burstein, G.T., Corrosion Vol.1 Chapter 7.5 (1994).Google Scholar
10. Zdanov, V.P. and Norton, P.R.. Appl. Surf. Sci. 99, 205 (1996).Google Scholar
11. Nowotny, J.. Diffusion in Solids and High Temperature Oxidation of Metals. Trans. Tech. Publ. Zurich (1992).Google Scholar
12. Evans, H.E., Mater. Sci. Eng. A120, 139 (1989).Google Scholar
13. Robertson, J. and Manning, M.I., Mater. Sci. Technol. 6, 81 (1990).Google Scholar
14. Graham, M.J. and Cohen, M., J. Electrochem. Soc. 119, 879 (1972).Google Scholar
15. Young, D.J. and Cohen, M., J. Electrochem. Soc. 124, 769 (1977).Google Scholar
16. Krol, S., Brit. Corros. Journal 34, 206 (1999).Google Scholar
17. Riley, A.M., Wells, D.B. and Williams, D.E., Corr. Sci., 32, 1307 (1991).Google Scholar
18. Burstein, G.T., Pistorious, P.C. and Mattin, S.P., Corr. Sci. 35, 57 (1993).Google Scholar
19. Suter, T., Peter, T. and Boehni, H., Mat. Sci. Forum, 192–194, 25 (1995).Google Scholar
20. Suter, T. and Boehni, H., Electrochimica Acta 42, 3275 (1997).Google Scholar
21. Burstein, G.T. and Mattin, S.P., In Critical Factors in Localized Corrosion II, Electrochem. Soc. Proc. Vol. 95. 15, 1 (1996).Google Scholar
22. Kobayashi, Y., Virtanen, S. and Boehni, H., J. Electrochem. Soc. 147, 155 (2000).Google Scholar
23. Ilevbare, G. and Burstein, G.T., Corr. Sci. 43, 485 (2001).Google Scholar
24. Williams, D.E., Stewart, J. and Balkwill, D.H., In Critical Factors in Localized Corrosion I, Electrochem. Soc. Proc. Vol. 92–9, 36 (1992).Google Scholar
25. Scully, J.R., Pride, S.T., Scully, H.S. and Hudson, H.L., In Critical Factors in Localized Corrosion II, Electrochem. Soc. Proc. Vol. 95–15, 15 (1995).Google Scholar
26. Kehler, B.A., Ilevbare, G.O. and Scully, J.R., In Localized Corrosion, Proc. Research Topical Symposium, CORROSION 2001, NACE International, Houston, TX (2001).Google Scholar
27. Maurice, V., Yang, W.P. and Marcus, P., J. Electrochem. Soc. 145, 909 (1998).Google Scholar
28. Burstein, G.T. and Souto, R.M., Electrochimica Acta 40, 1881 (1995).Google Scholar
29. Azumi, K., Yasui, N. and Seo, M., Corr. Sci. 42, 885 (2000).Google Scholar
30. Shibata, T. and Zhou, Y.-C., Corr. Sci. 37, 253 (1995).Google Scholar
31. Noel, J.J., The Electrochemistry of Titanium Corrosion, Ph.D. Thesis, University of Manitoba, (1999).Google Scholar
32. Dyer, C.K. and Leach, J.S.L., J. Electrochem. Soc. 125, 1032 (1978).Google Scholar
33. Yahalom, J. and Zahavi, J., Electrochimica Acta 15, 1429 (1970).Google Scholar
34. CRWMS M&O. Aging and Phase Stability of the Waste Package Outer Barrier, ANL-EBSMO-000002 REV00 (2000).Google Scholar
35. Rebak, R.B., Koon, N.E., Dillman, J.R., Crook, P. and Summers, T.S.E., Paper 181, Corrosion 2000, NACE International, Houston, TX (2000).Google Scholar
36. Lingen, E.Van der and Sandenbergh, R., Corr Sci. 43, 577 (2001).Google Scholar
37. Rebak, R.B., Summers, T.S.E. and Carranza, R.M., Mat. Res. Soc. Symp. Proc. Vol. 608, 109 (2000).Google Scholar
38. Rebak, R.B. and Koon, N.E., Paper 153, Corrosion 1998, NACE International, Houston, TX (1998).Google Scholar
39. Mattsson, H. and Olefjord, I., Werk und Korr 41, 383 (1990)Google Scholar
40. Mattsson, M., Li, C. and Olefjord, I., Werk und Korr 41, 578 (1990).Google Scholar
41. Johnson, L.H.et al, Atomic Energy of Canada Ltd. Report, AECL-10718, COG-93-8, 172 (1994).Google Scholar
42. Dunn, D.S., Cragnolino, G.A. and Sridhar, N., Mat. Res. Soc. Symp. Proc. Vol. 608, 89 (2000).Google Scholar
43. Brossia, C.S. and Cragnolino, G.A., Paper 211, CORROSION 2000, NACE International, Houston, TX (2000).Google Scholar
44. Dunn, D.S., Pan, Y.M. and Cragnolino, G.A., Paper 206, CORROSION 2000, NACE International, Houston, TX (2000).Google Scholar
45. Dunn, D.S., Brossia, C.S. and Pensado, O., Paper 1125, CORROSION 2001, NACE International Houston, TX (2001).Google Scholar
46. Boudin, S., Vignes, J.-L., Lorang, G., Belo, M. Da Cunha, Blondiaux, G., Mikhailov, S.M., Jacobs, J.P. and Brongersma, H.H., Surf. and Interface Anal. 22, 462 (1994).Google Scholar
47. Lorang, G., Jallerat, N., Quang, K.Vu and Langeron, J.P, Surf. and Interface Anal. 16, 325 (1994).Google Scholar
48. Kehler, B.A., Crevice Corrosion Electrochemistry of Alloys 625 and C-22, M.Sc. Thesis, University of Virginia (2001).Google Scholar
49. Lloyd, A.C., Shoesmith, D.W., McIntyre, N.S. and Noel, J.J., Stainless Steel World, May (2001).Google Scholar
50. Cavanaugh, M.A., Kargol, J.A., Nickerson, J. and Fiore, N.F., Corr. Sci. 39, 144 (1983).Google Scholar
51. Heine, B. and Kirchheim, R., Corr. Sci. 31, 533 (1990).Google Scholar
52. Kirchheim, R., Heine, B., Fischmeister, H., Hoffman, S., Knote, H. and Stoltz, Y., Corr. Sci., 899 (1989).Google Scholar
53. Kirchheim, R., Heine, B., Hoffmann, S. and Hofsass, H., Corr. Sci. 31, 573 (1990).Google Scholar
54. Schneider, A., Kuronn, D., Hoffman, S. and Kirchheim, R., Corr. Sci. 31, 191 (1990).Google Scholar
55. Maurice, V., Yang, W.P. and Marcus, P., J. Electrochem. Soc. 143, 1182 (1996).Google Scholar
56. Yang, W.P., Costa, D. and Marcus, P., J. Electrochem. Soc. 141, 2669 (1994).Google Scholar
57. Armstrong, R.D., Firman, R.E. and Thirsk, H.R., Corr. Sci. 13, 409 (1973).Google Scholar
58. Hubler, G.K. and McCafferty, E., Corr. Sci., 20, 103 (1980).Google Scholar
59. Brossia, C.S.et al., US Nuclear Regulatory Commission Report, CNWRA 2001-03 (2001).Google Scholar
60. Haruyama, S., Fukuyama, H., Nagashi, K., Denki Kagaku, 40, 371 (1972).Google Scholar
61. Shoesmith, D.W. and King, F.. Atomic Energy of Canada Ltd Report, AECL-11999 (1999).Google Scholar
62. Marcus, P., In Corrosion Mechanisms in Theory and Practice, Marcel Dekker, NY, 239 (1995).Google Scholar
63. Marcus, P. and Talah, H., Corr. Sci. 29, 455 (1989).Google Scholar
64. Marcus, P., Moscatelli, M. and Oudar, J., Electrochem. Soc. Proc. Vol 86–7, 281 (1986).Google Scholar
65. Marcus, P and Moscatelli, M., J. Electrochem. Soc. 136, 1634 (1989).Google Scholar
66. Suleiman, M.I., and, I. Ragault Newman, R.C., Corr. Sci. 36, 479 (1994).Google Scholar
67. Sato, N., Corr. Sci. 27, 421 (1987).Google Scholar
68. Lunde, L. and Nyborg, R., In Engineering Solutions to Industrial Corrosion Problems, Paper No. 5, NACE International, Houston, TX (1993)Google Scholar
69. Clayton, C.R. and Lu, Y.C., J. Electrochem. Soc. 133, 2465 (1986).Google Scholar
70. Gordon, G.. Long-term Behaviour of Corrosion Resistant Metals, Waste Package Materials Performance Peer Review Meeting, Las Vegas, NV, September 25, 2001.Google Scholar
71. O'ullivan, E.J.M. and Calvo, E.J., In Comprehensive Chemical Kinetics, Vol. 27, Elsevier, Amsterdam, Chapter 3 (1987).Google Scholar