Hostname: page-component-745bb68f8f-b6zl4 Total loading time: 0 Render date: 2025-01-15T06:43:58.277Z Has data issue: false hasContentIssue false

Excitonic Enhanced Optical Gain Of GaN/AlGaN Quantum Wells With Localized States

Published online by Cambridge University Press:  10 February 2011

Takeshi Uenoyama*
Affiliation:
Central Research Laboratories, Matsushita Electric Industrial Co., Ltd., 3–4 Hikaridai, Seikacho, Sourakugun, Kyoto 619–02, Japan, suzuki@crl.mei.co.jp
Get access

Abstract

We have evaluated the optical gain of GaN/AlGaN quantum well structures with localized states, taking into account the Coulomb interaction. The localized states axe introduced in the well as quantum dot-like subband states. We have used the temperature Green's function formalism to treat the many-body effects and have found a new excitonic enhancement of the optical gain involved the localized states. This enhancement is stronger than the conventional Coulomb enhancement. It might play an important role to reduce the threshold carrier density.

Type
Research Article
Copyright
Copyright © Materials Research Society 1998

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Nakamura, S., Senoh, M., Nagahama, S., Iwasa, N., Yamada, T., Matsushita, T., Sugimoto, Y., and Kiyoku, H., presented at 9t Annual Meeting of IEEE Lasers and Electro-Optics Society, PD1.1, Nov. 18–21, Boston, (1996).Google Scholar
2. Nakamura, S., presented at Materials Research Society Fall Meeting, NI.1, Dec. 2–6, Boston, (1996).Google Scholar
3. Suzuki, M., Uenoyama, T., and Yanase, A., Phys. Rev. B 52, 8132 (1995).Google Scholar
4. Uenoyama, T., and Suzuki, M., Appl. Phys. Lett. 67, 2527 (1995).Google Scholar
5. Suzuki, M., and Uenoyama, T., Jpn. J. Appl. hys. 35, 1420 (1996).Google Scholar
6. Suzuki, M., and Uenoyama, T., Jpn. J. Appl. Phys. 35 L953, (1996).Google Scholar
7. Suzuki, M., and Uenoyama, T., to be published.Google Scholar
8. Chichibu, S., Azuhata, T., Sota, T. and Nakamura, S., presennted at 38th Electronic Material Conference, W–10, June 26–28, Santa Barbara, (1996); Appl. Phys. Lett. 69, 4188 (1996); ibid.. 70, 2822 (1997).Google Scholar
9. Narukawa, Y., Kawakami, Y., Fujita, Sz., Fujita, Sg. and Nakamura, S., Phys. Rev. 55, R1938 (1997); Appl. Phys. Lett. 70, 981 (1997).Google Scholar
10. Ejder, E., Phys. Status Solidi A, 6, 445 (1971).Google Scholar
11. Ding, J., Jeon, H., Ishihara, T., Hagerott, M., and Nurmikko, A. V., Phys. Rev. Lett. 69, 1707 (1992). J. Ding, M. Hagerott, T. Ishihara, H. Jeon, and A. V. Nurmikko, Phys. Rev. B 47, 10528 (1993).Google Scholar
12. Mahan, G. D., Phys. Rev. 153, (1967) 882. H. Haug, and S. Schmitt-Rink, Prog. Quant. Electr. 9, 3 (1984).Google Scholar
13. Cho, W.W., Koch, S.W., and Sargent, M. III, Semiconductor-Laser Physics (1994) pp 160, Springer-Verlag Berlin Heidelberg.Google Scholar
14. Uenoyama, T., Phys. Rev. B 51, 10228 (1995).Google Scholar