Hostname: page-component-cd9895bd7-dk4vv Total loading time: 0 Render date: 2025-01-01T09:30:45.279Z Has data issue: false hasContentIssue false

Facile Alignment of Carbon Nanotubes Mediated by Tethered Maghemite Nanoparticles

Published online by Cambridge University Press:  01 February 2011

Il Tae Kim
Affiliation:
iltae.kim@gatech.edu, Georgia Institute of Technology, Materials Science and Engineering, Atlanta, Georgia, United States
Grady A Nunnery
Affiliation:
nunnery@gatech.edu, Georgia Institute of Technology, Materials Science and Engineering, Atlanta, Georgia, United States
Karl I Jacob
Affiliation:
karl.jacob@ptfe.gatech.edu, Georgia Institute of Technology, Polymer, Textile and Fiber Engineering, Atlanta, Georgia, United States
Justin Schwartz
Affiliation:
Justin_Schwartz@ncsu.edu, Florida State University, Mechanical Engineering, Tallahassee, Florida, United States
Xiaotao Liu
Affiliation:
liuxt@asc.magnet.fsu.edu, Florida State University, Mechanical Engineering, Tallahassee, Florida, United States
Rina Tannenbaum
Affiliation:
rinatann@mse.gatech.edu, Georgia Institute of Technology, Materials Science and Engineering, Atlanta, Georgia, United States
Get access

Abstract

We describe a novel, facile method for the alignment of multi-walled carbon nanotubes (MWNTs) in a magnetic field facilitated by the decoration of the MWNTs with monodisperse γ-Fe2O3 magnetic (maghemite) nanoparticles. The tethering of the nanoparticles was achieved by the attachment of γ-Fe2O3 nanoparticles that were synthesized using a modified sol-gel process, onto the carboxylate-activated MWNTs. Sodium dodecylbenzene sulfonate (NaDDBS) was used to prevent the formation of an iron oxide 3D network. Various characterization methods were employed to confirm the formation of homogeneously-distributed and nearly-monodispersed iron oxide nanoparticles, and show that they were indeed tethered to the walls of the MWNTs. The γ-Fe2O3 nanoparticles imparted magnetic characteristics to the MWNTs, which in turn, were oriented parallel to the direction of an externally-applied magnetic field. This facile alignment of MWNT could promote the enhancement of various properties, e.g. mechanical and electrical properties, of the resulting composites. Moreover, this facile alignment at low magnetic fields, made possible by the magnetization of the carbon nanotubes through the tethering of maghemite nanoparticles, may be applied to a variety of other useful nanofillers, such a glass fibers, clay nanoparticles and cellulose nanowhiskers.

Type
Research Article
Copyright
Copyright © Materials Research Society 2010

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1 Treacy, M. M. J. Ebbesen, T. W. Gibsoj, J. M. Nature 381, 678, 678680 (1996).Google Scholar
2 Lukic, B., Seo, J. W. Bacsa, R. R. Delpeux, S., Beguin, F., Bister, G., Fonseca, A., Nagy, A. J. B. Kis, A., Jeney, S., Nano Lett. 5, 20742077 (2005).10.1021/nl051034dGoogle Scholar
3 Yu, M. F. Files, B. S. Arepalli, S., Ruoff, R., Phys. Rev. Lett. 84, 55525555 (2000).10.1103/PhysRevLett.84.5552Google Scholar
4 Grzelczak, M., Correa-Duarte, M. A., Liz-Marzan, L. M., Small 2, 11741177 (2006).10.1002/smll.200600152Google Scholar
5 Kuang, Q., Li, S. F. Xie, Z. X. Lin, S. C. Zhang, X. H. Xie, S. Y. Huang, R. B. Zheng, L. S. Carbon 44, 11661172 (2006).10.1016/j.carbon.2005.11.001Google Scholar
6 Korneva, G., Ye, H., Gogotsi, Y., Halverson, D., Friedman, G., Bradley, J. C. Kornev, K. G. Nano Lett. 5, 879884 (2005).Google Scholar
7 Qu, L. T. Dai, L., Osawa, E., J. Am. Chem. Soc. 128, 55235532 (2006).Google Scholar
8 Han, L., Wu, W., Kirk, F. L. Luo, J., Maye, M. M. Kariuki, N. N. Li, Y. H. Wang, C., Zhong, C. J. Langmuir 20, 60196025 (2004).10.1021/la0497907Google Scholar
9 Yi, D. K. Lee, S. S. Ying, J. Y. Chem. Mater. 18, 24592461 (2006).Google Scholar
10 Sun, S. H. Murray, C. B. Murray, Weller, D., Folks, L., Moser, A., Science 287, 19891992 (2000).10.1126/science.287.5460.1989Google Scholar
11 Sun, Z., Liu, Z., Wang, Y., Han, B., Du, J., Zhang, J., J. Mater. Chem. 15, 44974501 (2005).Google Scholar
12 Youn, S.C. Jung, D., Ko, Y. K. Jin, Y. W. Kim, J. M. Jung, H., J. Am. Chem. Soc. 131, 742748 (2009.Google Scholar
13 Hyeon, T., Lee, S., Park, J., Chung, Y., Na, H., J. Am. Chem. Soc. 123, 1279812801 (2001).10.1021/ja016812sGoogle Scholar
14 Sun, Z., Yuan, H., Liu, Z., Han, B. Ha, Zhang, X. A A., Adv. Mater. dv. 17, 29932997 (2005).Google Scholar
15 deFaria, D. L. A. Silva, S. V. deOliveria, M. T. J. Raman Spectrosc. 28, 873878 (1997).Google Scholar
16 Camponeschi, E., Vance, R., Al-Haik, M. Al, Garmestani, H., Tannenbaum, R., Carbon 45 20372046 (2007).10.1016/j.carbon.2007.05.024Google Scholar
17 Zhu, Y., Ma, C., Zhang, W., Koratkar, N., J. Liang, J. Appl. Phys. 105, 054319 (2009).Google Scholar
18 Steinert, B. W. Dean, D. R. Polymer 50, 898904 (2009).Google Scholar