Hostname: page-component-78c5997874-v9fdk Total loading time: 0 Render date: 2024-11-14T06:14:54.097Z Has data issue: false hasContentIssue false

Ferroelectric Properties of 15–20nm-Thick PZT Ultrathin Films Prepared by MOCVD

Published online by Cambridge University Press:  11 February 2011

H. Nonomura
Affiliation:
Department of Electrical Engineering and Computer Sciences, Graduate School of Engineering, Himeji Institute of Technology, 2167 Shosha, Himeji, Hyogo 671–2201, Japan
H. Fujisawa
Affiliation:
Department of Electrical Engineering and Computer Sciences, Graduate School of Engineering, Himeji Institute of Technology, 2167 Shosha, Himeji, Hyogo 671–2201, Japan
M. Shimizu
Affiliation:
Department of Electrical Engineering and Computer Sciences, Graduate School of Engineering, Himeji Institute of Technology, 2167 Shosha, Himeji, Hyogo 671–2201, Japan
H. Niu
Affiliation:
Department of Electrical Engineering and Computer Sciences, Graduate School of Engineering, Himeji Institute of Technology, 2167 Shosha, Himeji, Hyogo 671–2201, Japan
K. Honda
Affiliation:
Fujitsu Laboratory Ltd., 10–1 Wakamiya Morinosato, Atsugi, Kanagawa 243–0197, Japan
Get access

Abstract

We investigated ferroelectric properties of 20nm-thick epitaxial Pb(Zr,Ti)O3 (PZT) ultrathin films prepared on SrRuO3 (SRO)/SrTiO3 (STO) by metalorganic chemical vapor deposition (MOCVD). When SRO with terrace ledges was used as a bottom electrode, 20nm-thick PZT ultrathin films with ferroelectricity were successfully obtained. These PZT films exhibited saturated hysteresis loops with remanent polarizations (Pr) of 29–33 μC/cm2 and coercive electric fields (Ec) of 340–370 kV/cm. On the other hand, when PZT films were grown on SRO without terrace ledges, PZT films showed no saturated hysteresis loops because of large leakage current. The 15nm-thick PZT ultrathin film exhibiting unsaturated hysteresis loop was also obtained.

Type
Research Article
Copyright
Copyright © Materials Research Society 2003

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Larsen, P. K., Dormans, G. J., Taylor, D. J. and van Veldhoven, P. J., J. Appl. Phys. 76, 2405 (1994).Google Scholar
2. Maruyama, T., Saitoh, M., Sakai, I. and Hidaka, T., Appl. Phys. Lett. 73, 3524 (1998).Google Scholar
3. Yanase, N., Abe, K., Fukushima, N. and Kawakubo, T., Jpn. J. Appl. Phys. 38, 5305 (1999).Google Scholar
4. Lin, C. H., Friddle, P. A., Ma, C. H., Daga, A. and Chen, H., J. Appl. Phys. 90, 1509 (2001).Google Scholar
5. Kijima, T. and Ishiwara, H., Jpn. J. Appl. Phys. 41, L716 (2002).Google Scholar
6. Shimizu, M., Fujisawa, H. and Niu, H., Mater. Res. Soc. Symp. Proc. 596, 259 (2000).Google Scholar
7. Contreras, J. R., Schubert, J., Poppe, U., Trithaveesak, O., Szot, K., Buchal, Ch., Kohlstedt, H. and Waser, R., Mat. Res. Soc. Symp. Proc. 688, C8.10.1 (2002).Google Scholar
8. Nonomura, H., Fujisawa, H., Shimizu, M., Niu, H. and Honda, K., Abstr. 8th Workshop on Oxide Electronics, Osaka, 2001, p.50.Google Scholar
9. Shimizu, M., Fujisawa, H., Niu, H. and Honda, K., J. Cryst. Growth 237–239, 443 (2002).Google Scholar
10. Fujisawa, H., Nonomura, H., Shimizu, M. and Niu, H., J. Cryst. Growth 237–239, 455 (2002).Google Scholar
11. Nonomura, H., Fujisawa, H., Shimizu, M. and Niu, H., Jpn. J. Appl. Phys. 41, 6682 (2002).Google Scholar
12. Kawasaki, M., Takahashi, K., Maeda, T., Tsuchiya, R., Shinohara, M., Ishiyama, O., Yonezawa, T., Yoshimoto, M. and Koinuma, H., Science 266, 1540 (1994).Google Scholar
13. Koster, G., Kropman, B. L., Rijnders, G. J. H. M., Blank, D. H. A. and Rogalla, H., Appl. Phys. Lett. 73, 2920 (1998).Google Scholar