Hostname: page-component-cd9895bd7-gxg78 Total loading time: 0 Render date: 2025-01-05T01:54:58.510Z Has data issue: false hasContentIssue false

Ferromagnetic Ordering at Room Temperature in ZnO:Co Nanoparticles

Published online by Cambridge University Press:  01 February 2011

Sujeet Chaudhary
Affiliation:
sujeetc@physics.iitd.ac.in, Indian Institute of Technology Delhi, Department of Physics, Hauz Khas, New Delhi, 110016, India
Kanwal Preet Bhatti
Affiliation:
bhattipkanwal@rediffmail.com, Indian Institute of Technology Delhi, Department of Physics, Hauz Khas, New Delhi, 110016, India
Shankhmala Kundu
Affiliation:
shankhamalakundu@yahoo.co.in, Indian Institute of Technology Delhi, Department of Physics, Hauz Khas, New Delhi, 110016, India
Subhash C. Kashyap
Affiliation:
skashyap@physic.iitd.ac.in, Indian Institute of Technology Delhi, Department of Physics, Hauz Khas, New Delhi, 110016, India
Dinesh K. Pandya
Affiliation:
dkpandya@physics.iitd.ac.in, Indian Institute of Technology Delhi, Department of Physics, Hauz Khas, New Delhi, 110016, India
Get access

Abstract

Intrinsic room temperature ferromagnetism is reported in sequentially sintered (in air ambient) nanocrystalline ZnO:Co (1 to 10 at% Co) samples prepared by chemical route. The Curie temperature of the ZnO:Co ferromagnetic samples is determined to be ∼495°C. The saturation magnetization of the ferromagnetic phase is found to first increase with Co concentration (up to 5%) and then decrease. It is also found to decrease with increase in sintering temperature up to 800°C; there after it remains unaffected till 1000°C. The d-d band transitions in the optical spectrum confirm that Co2+ substitutes Zn2+ in the ZnO lattice. A plausible explanation of the observed ferromagnetic ordering is presented in terms of Bound Magnetic Polarons model.

Type
Research Article
Copyright
Copyright © Materials Research Society 2007

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

[1] Kolesnik, S., Dabrowski, B., and Mais, J., J. Appl. Phys. 95, 2582 (2004).Google Scholar
[2] Lin, H., Chin, T. S., Shih, J. C., Lin, S. H., Hong, T. M.. Huang, R. T., Chen, F. R. and Kai, J. J., Appl. Phys. Lett. 85, 621 (2004).Google Scholar
[3] Wang, Y., Sun, L., Kong, L. G., Kang, J. F., Zhang, X. and Han, R., J. of Alloys and Compounds 423, 256 (2006)Google Scholar
[4] Manivannan, A., Dutta, P., Glaspell, G. and Seehra, M. S., J. Appl. Phys. 99, 08M110 (2006).Google Scholar
[5] Lommens, P., Smet, P. F., Donega, C. M., Maijerink, A., Piraux, L., Michotte, S., Tempfli, S. M., Poelman, D. and Hens, Z., J. Lumin. 118, 245 (2006).Google Scholar
[6] Ozerov, I., Chabre, F. and Marine, W., Mat. Sci. and Engg. B 25, 614 (2005).Google Scholar
[7] Schwartz, D. A. and Gamelin, D. R., Adv. Mater. 16 2115 (2005).Google Scholar
[8] Maensiri, S., Laokul, P., Phokha, S., J. Magn. Magn. Matr. 305 381 (2006).Google Scholar
[9] Martinez, B., Sandiumenge, F., Balcells, L., Aribol, J., Sibieude, F. and Monty, C., Phys. Rev. B 72, 165202 (2005).Google Scholar
[10] Garcia, M. A., Gonzalez, M. L. R., Quesada, A., Kramer, J. L. C., Fernandez, J. F., Khatib, S. J., Wennberg, A., Caballero, A. C., Gonzalez, M. S. M., Villegas, M., Calbet, J. M. G. and Hernando, A., Phys. Rev. Lett. 94, 217206 (2005).Google Scholar
[11] Kim, J. H., Kim, H., Kim, D., Ihm, Y. E. and Choo, W. K., J. Appl. Phys. 92, 6066 (2002).Google Scholar
[12] Deka, S. and Joy, P. A., Appl. Phys. Lett. 89 032508 (2006).Google Scholar
[13] Kaminski, A. and Sarma, S. D., Phys. Rev. Lett. 88, 247202 (2002).Google Scholar
[14] Coey, J. M. D., Venkatesan, M. and Fitzgerald, C.B., Nat. Mater. 4, 173 (2005).Google Scholar
[15] Song, C. et al., Phys. Rev. B 73, 024405 (2006).Google Scholar