Hostname: page-component-745bb68f8f-l4dxg Total loading time: 0 Render date: 2025-01-15T06:57:50.618Z Has data issue: false hasContentIssue false

Fine-Tuning the Physical Properties of Perovskite Related La-Ti-Oxides by Merely Altering the Oxygen Stoichiometry

Published online by Cambridge University Press:  18 March 2011

Olav Becker
Affiliation:
Lehrstuhl für Festköperchemie, Universität Augsburg Universitätsstrasse1, 86135 Augsburg, Germany
Stefan Ebbinghaus
Affiliation:
Lehrstuhl für Festköperchemie, Universität Augsburg Universitätsstrasse1, 86135 Augsburg, Germany
Bernd Renner
Affiliation:
Lehrstuhl für Festköperchemie, Universität Augsburg Universitätsstrasse1, 86135 Augsburg, Germany
Armin Reller
Affiliation:
Lehrstuhl für Festköperchemie, Universität Augsburg Universitätsstrasse1, 86135 Augsburg, Germany
Get access

Abstract

The isostructural oxides LaTiO3.5, SrNbO3.5 and CaNbO3.5 adopt layered structures made up of perovskite related slabs intermitted by layers of non-linking BO6-octahedra (B=Ti, Nb). In these phases the transition metals Ti and Nb are in their highest oxidation states +IV and +V, respectively. They are insulators, in the case of the Ti phase a ferroelectric insulator with the highest known Tc (above 1700°C). By changing the oxygen stoichiometry, i.e. by controlled reduction or re-oxidation processes in the range of 2ABO3.5 ø 2ABO3 + ½ O2 (A=La or Sr, B=Ti or Nb) mixed valence phases are obtained. Accordingly, the physical properties of the different phases alter from insulating to semiconducting or to conducting. Detailed studies on the structural changes reveal, however, that the sublattice of the metal cations is basically conserved. In principle the reduction corresponds to a condensation of the perovskite layers leading to intermediate phases such as the semiconducting LaTiO3.4, in which five TiO6-octahedra thick perovskite slabs constitute the structural framework and 20% of the Ti+IV cations are reduced to Ti+III. Conductivity measurements using single crystals of the corresponding Ti and Nb phases reveal that these mixed valence oxides must be considered as one-dimensional conductors. The fully reduced phases La+IIITi+IIIO3 and Sr+IINb+IVO3 adopt distorted perovskite structures. Extensive high resolution electron microscopic and light microscopic investigations have been carried out in order to characterize the structural mechanism of the reversible, highly topotactic reduction and re-oxidation processes. Thermogravimetric measurements in reducing and oxidizing atmospheres have been performed for the identification of the temperature ranges wherein the decisive mass changes take place. The results of the described experiments support that the properties of such metal oxides can be finely and reversibly tuned by merely changing the oxygen stoichiometries.

Type
Research Article
Copyright
Copyright © Materials Research Society 2001

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Galasso, F. S., Structure, Properties and Preparation of Perovskite-Type Compounds, Oxford: Pergamon, 1986; Perovskites and High-TC Superconductors, Gordon and Breach, 1990.Google Scholar
2. Tejuca, L. G. and Fierro, J. L. G., Properties and Applications of Perovskite-Type Oxides, Marcel Denker, Inc., New York, 1993.Google Scholar
3. Grenier, J.C., Pouchard, M., and Hagenmuller, P., Struct. Bonding, 47, 1 (1981).Google Scholar
4. Nanot, M. Queyroux, F., Gilles, J.-C., Carpy, A. and Galy, J., Solid State Chem. 11, 272 (1974).Google Scholar
5. Gasperin, M., Acta Cryst., B31, 2129 (1975)Google Scholar
6. Lichtenberg, F., Widmer, D., Bednorz, J.G., Williams, T. and Reller, A., Z. Phys. B 82, 211 (1991).Google Scholar
7. Williams, T., Lichtenberg, F., Widmer, D., Bednorz, J.G. and Reller, A., Solid State Chem. 103, 375 (1993).Google Scholar
8. Becker, O., PhD Thesis, Augsburg, University of, Germany, 2000.Google Scholar
9. Lichtenberg, F., Herrnberger, A., Wiedemann, K., Mannhart, J., submitted to Prog. Solid State Chem.Google Scholar