Hostname: page-component-745bb68f8f-s22k5 Total loading time: 0 Render date: 2025-01-15T07:01:09.366Z Has data issue: false hasContentIssue false

First-Principles Study of Photoexcited Defects in Polysilane Chains

Published online by Cambridge University Press:  26 February 2011

J. W. Mintmire
Affiliation:
Theoretical Chemistry Section, Naval Research Laboratory, Washington, DC 20375-5000
R. C. Mowrey
Affiliation:
Theoretical Chemistry Section, Naval Research Laboratory, Washington, DC 20375-5000
D. W. Brenner
Affiliation:
Theoretical Chemistry Section, Naval Research Laboratory, Washington, DC 20375-5000
B. I. Dunlap
Affiliation:
Theoretical Chemistry Section, Naval Research Laboratory, Washington, DC 20375-5000
C. T. White
Affiliation:
Theoretical Chemistry Section, Naval Research Laboratory, Washington, DC 20375-5000
Get access

Abstract

Organopolysilane materials have recently demonstrated potential technological importance as positive photoresists, photoconductors, and nonlinear optical materials. Many of the technological applications of these materials depend intimately on the photoexcitation process in these materials, possibly resulting in either bond scission or the creation of mobile charge carriers. Herein we present some preliminary results of a model simulation of the photoexcitation process in oligomeric polysilane chains using a recently developed first-principles local-density functional method for the calculation of electronic structures,total energies, and gradients of the total energy with respect to nuclear coordinates.

Type
Research Article
Copyright
Copyright © Materials Research Society 1991

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. For a review, see West, R., J. Organometal. Chem. 300, 327 (1980) and references therein;Google Scholar
1a West, R. and Maxha, J., in Inorganic and Organometallic Polymers, Ed., Zeldin, M., Wynne, K. J., and Allcock, H. R., ACS Symposium Series No. 360, American Chemical Society: Washington, DC (1988) pp. 620, as well as other articles in the same volume.CrossRefGoogle Scholar
2. Kipping, F. S., J. Chem. Soc. 125, 2291 (1924).CrossRefGoogle Scholar
3. Burkhard, C. A., J. Am. Chem. Soc. 71, 963 (1949).Google Scholar
4. Yajima, S., Hayashi, J., and Omori, M., Chem. Lett., 931 (1975);Google Scholar
4a Yajima, S., Okamura, K., and Hayashi, J., Chem. Lett.720 (1975).Google Scholar
5. Zeigler, J. M., Harrah, L. A., and Johnson, A. W., SPIE Adv. Resist Technol. Proc. II 539, 166 (1985).Google Scholar
6. Hofer, D. C., Miller, R. D., and Willson, C. G., SPIE Adv. Resist Technol. Proc. 469, 16 (1984).Google Scholar
7. Hofer, D. C., Miller, R. D., Willson, C. G., and Neurather, A. R., SPIE Adv. Resist Technol. Proc. 469, 108 (1984).Google Scholar
8. Kepler, R. G., Zeigler, J. M., and Harrah, L. A., Phys. Rev. B 35, 2818 (1987).Google Scholar
9. Stolka, M., Yuh, H.-J., McGrane, K., and Pai, D., J. Polym. Sci., Polym. Chem. Ed. 25, 823 (1987).Google Scholar
10. Karatsu, T., Miller, R. D., Sooriyakumaran, R., and Michl, J., J. Am. Chem. Soc. 111, 1140 (1989).Google Scholar
11. Helgaker, T., Uggerud, E., and Aa, H. A.. Jensen, Chem. Phys. Lett. 173, 145 (1990).Google Scholar
12. Dunlap, B. I., Connolly, J. W. D., and Sabin, J. R., J. Chem. Phys. 71, 3396 (1979);Google Scholar
12a Dunlap, B. I., Connolly, J. W. D., and Sabin, J. R., J. Chem. Phys. 71, 3396 (1979)71, 4993 (1979).Google Scholar
13. Mintmire, J. W. and White, C. T., Bull. Am. Phys. Soc. 31, 353 (1986).Google Scholar
14. Mintmire, J. W., Int. J. Quantum Chem. Symp. 24, in press (1990).Google Scholar
15. Slater, J. C., The Self-Consistent Field for Molecules and Solids: Quantum Theory of Molecules and Solids, Vol. 4 (McGraw-Hill, New York, 1974).Google Scholar
16. Binkley, J S., Pople, J. A., and Hehre, W. J., J. Am. Chem. Soc. 102, 939 (1980).Google Scholar
17. Hehre, W. J., Radom, L., Schleyer, P. v.R., and Pople, J. A., Ab Initio Molecular Orbital Theory (Wiley, New York, 1986).Google Scholar
18. Dunlap, B. I. and Cook, M., Int. J. Quantum Chem. 29, 767 (1986).Google Scholar
19. Mintmire, J. W. and Dunlap, B. I., Phys. Rev. A 25, 88 (1982).Google Scholar
20. Dunlap, B. I., Andzelm, J., and Mintmire, J. W., Phys. Rev. A 42, in press (1990).Google Scholar
21. Fletcher, R., Practical Methods of Optimization (Wiley, Chichester, 1980).Google Scholar
22. Dennis, J. E. Jr., and Schnabel, R. B., Numerical Methods for Unconstrained Optimizations and Nonlinear Equations (Prentice-Hall, Englewood Cliffs, NJ, 1983).Google Scholar
23. Head, J. D. and Zerner, M. C., Chem. Phys. Lett. 122, 264 (1985).Google Scholar
24. Mintmire, J. W., Mat. Res. Soc. Symp. Proc. 141, 235 (1988).Google Scholar
25. Ortiz, J. V. and Mintmire, J. W., J. Am. Chem. Soc. 110, 4522 (1988);Google Scholar
25a Mintmire, J. W. and Ortiz, J. V., Macromolecules 21, 1189 (1988).CrossRefGoogle Scholar
26. Teramae, H. and Takeda, K., J. Am. Chem. Soc. 111, 1281 (1989).Google Scholar
27. Nelson, J. T. and Pietro, W. J., J. Am. Chem. Soc. 92, 1365 (1988).Google Scholar