Hostname: page-component-cd9895bd7-gvvz8 Total loading time: 0 Render date: 2025-01-01T07:52:23.195Z Has data issue: false hasContentIssue false

Formation and Properties of Porous Si Superlattices

Published online by Cambridge University Press:  28 February 2011

M.G. Berger
Affiliation:
Institut für Schicht- und Ionentechnik (ISI), Forschungszentrum Jülich GmbH, D-52425 Jülich, Germany
R. Arens-Fischer
Affiliation:
Institut für Schicht- und Ionentechnik (ISI), Forschungszentrum Jülich GmbH, D-52425 Jülich, Germany
St. Frohnhoff
Affiliation:
Institut für Schicht- und Ionentechnik (ISI), Forschungszentrum Jülich GmbH, D-52425 Jülich, Germany
C. Dieker
Affiliation:
Institut für Schicht- und Ionentechnik (ISI), Forschungszentrum Jülich GmbH, D-52425 Jülich, Germany
K. Winz
Affiliation:
Institut für Schicht- und Ionentechnik (ISI), Forschungszentrum Jülich GmbH, D-52425 Jülich, Germany
H. Münder
Affiliation:
Institut für Schicht- und Ionentechnik (ISI), Forschungszentrum Jülich GmbH, D-52425 Jülich, Germany
H. Lüth
Affiliation:
Institut für Schicht- und Ionentechnik (ISI), Forschungszentrum Jülich GmbH, D-52425 Jülich, Germany
M. Arntzen
Affiliation:
I. Physikalisches Institut, RWTH Aachen, D-52056 Aachen, Germany
W. Theiss
Affiliation:
I. Physikalisches Institut, RWTH Aachen, D-52056 Aachen, Germany
Get access

Abstract

Porous silicon superlattices (PS-SL) were investigated by transmission electron microscopy (TEM), scanning electron microscopy (SEM), spectroscopic ellipsometry and reflectance spectroscopy. Type I superlattices were formed by periodically changing the current density during the etch process. The quality of the interface between layers of different porosity depends on the quality of the silicon substrate. Optical components such as Bragg reflectors or Fabry-Perot filters were designed using the optical data of single porous layers. A good long term stability of the layers is achieved by using thermal oxidation steps. Type II superlattices were formed on substrates with layers of alternating doping level. The more complex layer structure of these superlattices is explained by the selectivity of the etch process on the doping level.

Type
Research Article
Copyright
Copyright © Materials Research Society 1995

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1 Uhlir, A., Bell Syst. Tech. J. 35, 333 (1956).Google Scholar
2 Turner, D., J.Electrochem.Soc. 105, 402 (1958).Google Scholar
3 Lehmann, V. and Gösele, U., Appl. Phys. Lett. 58, 856 (1991).Google Scholar
4 Berger, M., Münder, H., Frohnhoff, S., Thönissen, M., and Luth, H., Patent: DE P 43 19 413.3-33 (14.6.93).Google Scholar
5 Münder, H. et al. , Investigation of porous si superlattices by optical techniques, in Formation of semiconductor interfaces, edited by Lengeler, B., Lüth, H., Mönch, W., and Pollmann, J., page 736, Singapore, New Jersey, London, Hong Kong, 1993, World Scientific.Google Scholar
6 Berger, M. et al. , J. Phys. D: Appl. Phys. 27, 1333 (1994).Google Scholar
7 Frohnhoff, S. et al. , Thin Solid Films, in press (1994).Google Scholar
8 Berger, M., Frohnhoff, S., Theiβ, W., Rossow, U., and Münder, H., Porous si: From single porous layers to porosity superlattices, in Les Houches Winter School "Luminescence of porous silicon and silicon nanostructures", 1994.Google Scholar
9 Ligeon, M. et al. , J. Appl. Phys. 66, 3814 (1989).Google Scholar
10 Berger, M. et al. , Thin Solid Films, in press (1994).Google Scholar
11 Scout - doing optics by computer, A Windows application written by Theiβ, W..Google Scholar
12 Münder, H. et al. , J. of Luminescence 57, 223 (1993).Google Scholar