Hostname: page-component-745bb68f8f-f46jp Total loading time: 0 Render date: 2025-01-15T06:57:27.253Z Has data issue: false hasContentIssue false

Ge-Quantum Dots on SI(001) Tailored by Carbon Predeposition

Published online by Cambridge University Press:  10 February 2011

O. Leifeld
Affiliation:
Micro- and Nanostructures Laboratory, Paul-Scherrer-Institute, CH-5232 Villigen-PSI Institut de Physique Expérimentale, EPFL, CH-1015 Lausanne, Switzerland
D. Grützmacher
Affiliation:
Micro- and Nanostructures Laboratory, Paul-Scherrer-Institute, CH-5232 Villigen-PSI
B. Müller
Affiliation:
Institute of Quantum Electronics, Nonlinear Optics Laboratory, ETHZ, CH-8093 Zürich, Switzerland
K. Kern
Affiliation:
Institut de Physique Expérimentale, EPFL, CH-1015 Lausanne, Switzerland
Get access

Abstract

The morphology of Si(001) after carbon deposition of 0.05 to 0.11 monolayers (ML) was investigated in situ by ultrahigh vacuum scanning tunneling microscopy (UHV-STM). The carbon induces a c(4×4)-reconstruction of the surface. In addition, carbon increases the surface roughness compared to clean Si(001) (2×1). In a second step, the influence of the carbon induced restructuring on Ge-island nucleation was investigated. The 3D-growth sets in at considerably lower Ge coverage compared to the clean Si(001) (2×1) surface. This leads to a high density of small though irregularly shaped dots, consisting of stepped terraces, already at 2.5 ML Ge. Increasing the Ge-coverage beyond the critical thickness for facet formation, the dots show { 105 }- facets well known from Ge-clusters on bare Si(001) (2×1). However, they are flat on top with a (001)-facet showing the typical buckled Ge rows and missing dimers. This indicates that the compressive strain is not fully relaxed in these hut clusters.

Type
Research Article
Copyright
Copyright © Materials Research Society 1998

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1 Schmidt, O.G., Lange, C., Eberl, K., Kienzle, O., and Ernst, F., Appl. Phys. Lett. 71, 2340 (1997)Google Scholar
2. Besocke, K., Surf. Sci. 181, 145 (1987)Google Scholar
3. Leifeld, O., Müller, B., Grützmacher, D.A., and Kern, K., Appl. Phys. A 66(3), S993, (1998)Google Scholar
4. Ide, T., and Mizutani, T. Google Scholar
5. Uhrberg, R.I.G., Northrup, J.E., Biegelsen, D.K., Bringans, R.D., and Swartz, L.E., Phys. Rev.B 46(16), 10251 (1992)Google Scholar
6. Miki, K., Sakamoto, K., and Sakamoto, T., Appl. Phys. Lett. 71(22), 3266 (1997)Google Scholar
7. Mo, Y.-W., Savage, D.E., Swartzentruber, B.S., and Lagally, M.G., Phys. Rev. Lett. 65(8), 1020 (1990)Google Scholar
8. Eaglesham, D.J., and Cerullo, M., Phys. Rev. Lett. 64(16), 1943 (1990)Google Scholar
9. Tomori, M., Watanabe, K., Kobayashi, M., Nishikawa, O., Appl. Surf. Sci. 76/77, 322 (1994)Google Scholar
10. Köhler, U., Jusko, O., Pietsch, G., Müller, B., and Henzler, M., Surf. Sci. 248, 321 (1991)Google Scholar
11. Steinfort, A.J., Scholte, P.M.L.O., Ettema, A., Tuinstra, F., Nielsen, M., Landmark, E., Smilgies, D.M., Feidenhans'I, R., Falkenberg, G., Seehofer, L., and Johnson, R.L., Phys. Rev. Lett. 77(10), 2009 (1996)Google Scholar
12. Khor, K.E., and Sarma, S. Das, J. Vac. Sci. Technol. B 15(4), 1051 (1997)Google Scholar