Hostname: page-component-cd9895bd7-gvvz8 Total loading time: 0 Render date: 2025-01-01T07:14:54.539Z Has data issue: false hasContentIssue false

Giant Electrocaloric Effect in High-Energy Electron Irradiated P(VDF-TrFE) Copolymers

Published online by Cambridge University Press:  25 March 2011

S. G. Lu*
Affiliation:
Materials Research Institute, The Pennsylvania State University, University Park, PA 16802, USA
X. Y. Li
Affiliation:
Materials Research Institute, The Pennsylvania State University, University Park, PA 16802, USA Department of Electrical Engineering, The Pennsylvania State University, University Park, PA 16802, USA
J. P. Cheng
Affiliation:
Materials Research Institute, The Pennsylvania State University, University Park, PA 16802, USA
L. Gorny
Affiliation:
Materials Research Institute, The Pennsylvania State University, University Park, PA 16802, USA
Q. M. Zhang
Affiliation:
Materials Research Institute, The Pennsylvania State University, University Park, PA 16802, USA Department of Electrical Engineering, The Pennsylvania State University, University Park, PA 16802, USA
*
*Contact person: sul26@psu.edu. Phone: 814-863-1006; Fax: 814-863-7846.
Get access

Abstract

A direct calorimetry method was developed and used to measure the electrocaloric effect (ECE). A temperature change ΔT of over 20 °C and an entropy change ΔS of over 95 J/(kgK) were procured at 33 °C and 160 MV/m in the high-energy electron irradiated poly(vinylidene fluoride-trifluoroethylene) (P(VDF-TrFE)) 68/32 mol% copolymers, which were larger than those of terpolymer blends (ΔT = 9 °C, ΔS=46 J/(kgK) at 180 MV/m and room temperature) and our earlier report on P(VDF-TrFE) 55/45 mol% normal ferroelectric copolymer (12 °C and 55 J/(kgK) at 80 °C). We observed that the β value ((8.7±0.6)×107 JmC-2K-1) in the equation of ΔS=1/2βΔD2 derived from ΔS - ΔD2 relation for irradiated copolymers was larger than that of the terpolymer blends ((5.4±0.5)×107 JmC-2K-1). It was also found that the irradiated copolymer showed a sharp depolarization peak at Td < Tm (maximum permittivity temperature), which is frequency independent, in the dielectric constant - temperature characteristics, a larger depolarization value at Td in the thermally stimulated depolarization current (TSDC) - temperature relationship, and a larger volume strain/longitudinal strain ratio over terpolymer blends. The giant ECE in irradiated copolymer is regarded as due to the greater randomness present in the relaxor state. In irradiated copolymers, the long all-trans chains are broken by the high-energy electrons, which make the small sized all-trans sequences more easily reorient along the electric field, more remarkably affecting the permittivity, TSDC, and volume strain.

Type
Research Article
Copyright
Copyright © Materials Research Society 2011

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

[1] Mischenko, A.S., Zhang, Q., Scott, J. F., Whatmore, R. W., and Mathur, N. D., Science 311, 1270 (2006).10.1126/science.1123811Google Scholar
[2] Neese, B., Chu, B., Lu, S. G., Wang, Y., Furman, E., and Zhang, Q. M., Science 321, 821 (2008).10.1126/science.1159655Google Scholar
[3] Akcay, G., Alpay, S. P., Mantese, J. V., and Rossetti, G. A. Jr. Appl. Phys. Lett. 90, 252909 (2007).10.1063/1.2750546Google Scholar
[4] Saranya, D., Chaudhuri, A. R., Parui, J., and Krupanidhi, S. B., Bull. Mater. Sci. 32, 259 (2009).10.1007/s12034-009-0039-3Google Scholar
[5] Sebald, G., Seveyrat, L., Guyomar, D., Lebrun, L., Guiffard, B., and Pruvost, S.. J. Appl. Phys. 100, 124112 (2006).10.1063/1.2407271Google Scholar
[6] Kobeko, P. and Kurtschatov, J., Z. Physik 66, 192 (1930).10.1007/BF01392900Google Scholar
[7] Hegenbarth, E., Cryogenics 1, 242 (1961).10.1016/S0011-2275(61)80015-5Google Scholar
[8] Thacher, P.D., J. Appl. Phys. 39, 1996 (1968).10.1063/1.1656478Google Scholar
[9] Lawless, W. N., Phys. Rev. B16, 433 (1977).10.1103/PhysRevB.16.433Google Scholar
[10] Tuttle, B. A. and Payne, D. A., Ferroelectrics 37, 603 (1981).10.1080/00150198108223496Google Scholar
[11] Correia, T. M., Young, J. S., Whatmore, R. W., Scott, J. F., Mathur, N. D., and Zhang, Q., Appl. Phys. Lett. 95, 182904 (2009).10.1063/1.3257695Google Scholar
[12] Furukawa, T., Ferroelectrics 57, 63(1984).10.1080/00150198408012752Google Scholar
[13] Amin, A., Cross, L. E. and Newnham, R. E., Ferroelectrics 37, 647 (1981).10.1080/00150198108223507Google Scholar
[14] Amin, A., Newnham, R. E. and Cross, L. E., J. Solid State Chem. 37, 248 (1981).10.1016/0022-4596(81)90091-8Google Scholar
[15] Lu, S. G., Rožič, B. Zhang, Q. M., Kutnjak, Z., Li, Xinyu, Furman, E., Gorny, Lee J., Lin, Minren, Malič, B., Kosec, M., Blinc, R., and Pirc, R., Appl. Phys. Lett. 97, 162904 (2010).10.1063/1.3501975Google Scholar
[16] Zhang, Q. M., Bharti, V., and Zhao, X., Science 280, 2101 (1998).10.1126/science.280.5372.2101Google Scholar
[17] Cheng, Z. Y., Olson, D., Xu, H. S., Xia, F., Hundal, J. S., Zhang, Q. M., Bateman, F. B., Kavarnos, G. J., and Ramotowski, T., Macromolecules 35, 664 (2002).10.1021/ma0112265Google Scholar
[18] Cheng, Z. Y., Bharti, V., Xu, T. B., Xu, H. S., Mai, T. and Zhang, Q. M., Sen. Actuat. A 90, 138 (2001).10.1016/S0924-4247(01)00496-4Google Scholar
[19] Kukreti, A., Kumar, A. and Naithani, U. C., Indian J. Pure Appl. Phys. 47, 43 (2009).Google Scholar
[20] Lu, S. G. and Zhang, Q. M., Adv. Mater. 21, 1983 (2009).10.1002/adma.200802902Google Scholar
[21] Lu, S. G., Rožič, B. Zhang, Q. M., Kutnjak, Z., Pirc, R., Lin, Minren, Li, Xinyu, and Gorny, Lee J., Appl. Phys. Lett. 97, 202901 (2010).10.1063/1.3514255Google Scholar
[22] Belov, K.P., Magnetic Transitions, (Consultants Bureau, New York, 1961).Google Scholar
[23] Spichkin, Y.I., Derkach, A.V., Tishin, A.M., Kuz’min, M.D., Chernyshov, A.S., Gschneidner, K.A. Jr., and Pecharsky, V.K., J. Mag. Mag, Mater. 316, e555 (2007).10.1016/j.jmmm.2007.03.017Google Scholar
[24] Lu, S. G., Fang, Z., Furman, E., Wang, Y., Zhang, Q. M., Mudryk, Y., Gschneidner, K. A. Jr., Pecharsky, V. K., and Nan, C. W., Appl. Phys. Lett. 96, 102902 (2010).10.1063/1.3358133Google Scholar