Article contents
Giant Magnetostrictive Multilayer Thin Film Transducers
Published online by Cambridge University Press: 10 February 2011
Abstract
Magnetostrictive multilayer films which combine exchange coupled giant magnetostrictive materials (amorphous Tb0.4Fe0.6) and materials with large polarizations (Fe or Fe0.5Co0.5) were prepared by dc or rf magnetron sputtering using a rotary turn-table technique in a stop-and-go mode. The magnetic properties of TbFe/Fe and TbFe/FeCo multilayers were investigated in relation to the layer thicknesses and the annealing temperatures. Giant magnetoelastic coupling coefficients (or magnetostrictions) are achieved at low fields, due to the magnetic polarization enhancement in such multilayers. Saturation magnetoelastic coupling coefficients of 20 MPa at 20 mT in the case of TbFe/Fe and of 28 MPa at 20 mT in the case of TbFe/FeCo were achieved. These high low-field magnetoelastic coupling coeffients and the possibility to engineer the material's properties by layer thickness variation are considered to be important features for applications of these films as thin film transducers in microsystems.
- Type
- Research Article
- Information
- Copyright
- Copyright © Materials Research Society 1997
References
REFERENCES
- 4
- Cited by