No CrossRef data available.
Published online by Cambridge University Press: 21 March 2011
We calculated the atomic structure of the (310)[001] symmetric tilt grain boundary (GB) in B2 ordered Fe-Al, using empirical and ab initio potentials. Including a proper treatment of the influence of small departures from bulk B2 stoichiometry on chemical potentials through a thermodynamic point-defect model, we obtain low energy GB variants geometrically close to the usual ones deduced from the coincidence site lattice (CSL) theory. In Al-rich alloys, both methods predict GB Al segregation whereas in Fe-rich alloys, the empirical (resp. ab initio) approach leads to Fe (resp. Fe or no) segregation. With both methods, strong GB chemical effects triggered by the bulk composition appear, showing that in B2 Fe-Al, GB properties may be strongly influenced by small bulk composition changes.