Hostname: page-component-745bb68f8f-mzp66 Total loading time: 0 Render date: 2025-01-15T06:01:13.975Z Has data issue: false hasContentIssue false

Grain boundary structure in B2 Fe-Al ordered alloys: an atomic-scale simulation

Published online by Cambridge University Press:  21 March 2011

R. Besson
Affiliation:
Laboratoire de Métallurgie Physique et Génie des Matériaux - C.N.R.S. U.M.R. 8517 U.S.T.L. - Bât. C6 - 59655 Villeneuve d'Ascq Cedex - Franceremy.besson@univ-lille1.fr, charlotte.becquart@univ-lille1.fr, alexandre.legris@univ-lille1.fr
C. S. Becquart
Affiliation:
Laboratoire de Métallurgie Physique et Génie des Matériaux - C.N.R.S. U.M.R. 8517 U.S.T.L. - Bât. C6 - 59655 Villeneuve d'Ascq Cedex - Franceremy.besson@univ-lille1.fr, charlotte.becquart@univ-lille1.fr, alexandre.legris@univ-lille1.fr
A. Legris
Affiliation:
Laboratoire de Métallurgie Physique et Génie des Matériaux - C.N.R.S. U.M.R. 8517 U.S.T.L. - Bât. C6 - 59655 Villeneuve d'Ascq Cedex - Franceremy.besson@univ-lille1.fr, charlotte.becquart@univ-lille1.fr, alexandre.legris@univ-lille1.fr
J. Morillo
Affiliation:
Structure des Systèmes de Basse Dimensionnalité - C.N.R.S. - C.E.M.E.S. 29, Rue Jeanne Marvig - 31055 Toulouse Cedex 4 - Francejoseph.morillo@cemes.fr
Get access

Abstract

We calculated the atomic structure of the (310)[001] symmetric tilt grain boundary (GB) in B2 ordered Fe-Al, using empirical and ab initio potentials. Including a proper treatment of the influence of small departures from bulk B2 stoichiometry on chemical potentials through a thermodynamic point-defect model, we obtain low energy GB variants geometrically close to the usual ones deduced from the coincidence site lattice (CSL) theory. In Al-rich alloys, both methods predict GB Al segregation whereas in Fe-rich alloys, the empirical (resp. ab initio) approach leads to Fe (resp. Fe or no) segregation. With both methods, strong GB chemical effects triggered by the bulk composition appear, showing that in B2 Fe-Al, GB properties may be strongly influenced by small bulk composition changes.

Type
Research Article
Copyright
Copyright © Materials Research Society 2001

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Intermetallic compounds: principles and practice, Westbrook, J. H. and Fleischer, R. L. ed. (Wiley & Sons, New York, 1994).Google Scholar
2. Besson, R. and Morillo, J., Phys. Rev. B 55, 193 (1997).Google Scholar
3. Besson, R. and Morillo, J., Interface Sci. 7, 103 (1999).Google Scholar
4. Kresse, G. and Hafner, J., Phys. Rev. B 47 (1993) 558; ibid. 49, 14251 (1994).Google Scholar
5. Kresse, G. and Furthmüller, J., Phys. Rev. B 54, 11169 (1996).Google Scholar
6. Vanderbilt, D., Phys. Rev. B 41, 7892 (1990); G. Kresse and J. Hafner, J. Phys.: Condens. Matter 6, 8245 (1996).Google Scholar
7. Perdew, J. P., Chevary, J.A., Vosko, S.H., Jackson, K.A., Pederson, M.R., Singhand, D.J. and Fiolhais, C., Phys. Rev. B 46, 6671 (1992).Google Scholar
8. Besson, R. and Morillo, J., Comput. Mater. Sci. 10, 416 (1998).Google Scholar
9. Mayer, J. and Fähnle, M., Acta Mater. 45, 2207 (1997).Google Scholar
10. Besson, R., thèse de doctorat, E. N. S. des Mines, Saint-Etienne (1997).Google Scholar
11. Wolf, D., Phil. Mag. A 63, 1117 (1991).Google Scholar
12. Wright, A. and Atlas, S., Phys. Rev. B 50, 15248 (1994).Google Scholar
13. Nowicki, T., Joud, J.-C. and Biscondi, M., J. Phys. C1 51, 293 (1990).Google Scholar
14. Hagen, M. and Finnis, M.W., Mater. Sci. Forum 207, 245 (1996).Google Scholar
15. Ray, I. L. F., Crawford, R. C. and Cockayne, D. J. H., Phil. Mag. 21, 1027 (1970).Google Scholar
16. Hong, T. and Freeman, A. J., J. Mater. Res. 7, 68 (1992).Google Scholar