Hostname: page-component-745bb68f8f-d8cs5 Total loading time: 0 Render date: 2025-01-15T07:09:18.377Z Has data issue: false hasContentIssue false

Grain Boundary Structures in High-Purity Al2O3 Bicrystals Grown From the Melt

Published online by Cambridge University Press:  28 February 2011

P.A. Morris
Affiliation:
Department of Materials Science and Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139
R.L. Coble
Affiliation:
Department of Materials Science and Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139
Get access

Abstract

The clean room processing, firing and crystal growth techniques required to produce high-purity Al2O3 crystals and bicrystals with [2110] tilt boundaries near low Σ misorientations are described. The chemical analysis requirements for high-purity ceramic materials are discussed. The boundary characteristics of the θ=33.2°, near Σ = 11, misorientation and the applicability of the CSL model to describe the observed facet planes is determined. The periodicity of the dislocations present in the boundary is 21 nm. STEM analysis of the grain boundary region indicates no second phase or detectable impurity concentrations. The importance of gra in boundary structure investigations in high-purity materials and of chemically well-characterized boundaries is discussed.

Type
Research Article
Copyright
Copyright © Materials Research Society 1986

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Mackrodt, W.C., Structure and Properties of MgO and Al2O3 Ceramics, Advances in Ceramics, Vol.10 (Am. Ceramic Soc., Columbus, OH, 1984) pp. 6278.Google Scholar
2. Rasumssin, J.J. and Kingery, W.D., J. Am. Cer. Soc. 53 (8), 436440 (1970).Google Scholar
3. Pfann, W.G., Zone Melting. (John Wiley and Sons,Inc., NY, 1959).Google Scholar
4. Wada, K. and Hoshikawa, K., J. Cryst. Growth 50, 151159 (1980).Google Scholar
5. Materials Research Laboratory, U. of IL. Urbana, IL.Google Scholar
6. Morris, P.A. and Coble, R.L., Proceedings of the 6th Int. Symp. of High-Purity Materials, (Oberlungwitz, G.D.R. 1985) pp. 3031.Google Scholar
7. Morris, P.A., Handwerker, C.A., Coble, R.L., Gabbe, D.R., Howard, R.T., Electronic Packaging Materials Science. Mat. Res. Soc. Vol. 40, (Mat. Res. Soc., Pittsburg, PA, 1985) pp. 8996.Google Scholar
8. Davis, M.P., J. Am. Cer. Soc. 42 (9), 463464 (1964).CrossRefGoogle Scholar
9. Scott, W.D., Trans. Brit. Cer. Soc. 66 (7), 315318 (1967).Google Scholar
10. Parker, H.S. and Harding, C.A., J. Am. Cer. Soc. 53 (1), 583585 (1970).Google Scholar
11. Dhalenne, G. and Revcolevschi, A., J. Cryst. Growth 44, 297305 (1978).Google Scholar
12. Pauling, L. and Hendricks, S.B., J. Am. Chem. Soc. 47, 781790 (1925).Google Scholar
13. Kronberg, M.L., Acta Met. Vol. 5, 507524 (1957).CrossRefGoogle Scholar
14. Newnham, R.E. and De Haan, Y.M., Zeitchrift fur Kristall., Bd. 117, 235237 (1962).Google Scholar
15. Balluffi, R.W., Brokman, A., and King, A.H., Acta Met. Vol. 30, 14531470 (1982).Google Scholar
16. Bollman, W., Surface Science, 31, 111 (1972).Google Scholar
17. Wolf, D., Supp. to J.of Physique colloque N°4, 46 197212 (1985).Google Scholar
18. Balluffi, R.W., Bristowe, P.D., and Sun, C.P., J. Am Cer. Soc. 64 (1), 2334 (1981).Google Scholar
19. Kingery, W.D., J. Am. Cer. Soc., 57 (1), 18 (1974).Google Scholar
20. Wolf, D., Character of Grain Boundaries. Advances in Ceramics Vol. 6. (Am. Cer. Soc. , Columbus, OH 1983) pp. 3643.Google Scholar
21. Balluffi, R.W., Interfacial Segregation (Am. Soc. for Metals, Metals Park, OH 1979) pp. 193223.Google Scholar
22. Chaudhari, P. and Matthews, J.W., J. Applied Phys. 42, 30633066 (1971).Google Scholar
23. Mykura, H., Bansal, P.S., and Lewis, M.H., Phil. Mag. 42 (2) 225–223 (1980).Google Scholar
24. Sun, C.P. and Balluffi, R.W., Phil. Mag. A 46, 4962 (1982).Google Scholar
25. Sun, C.P. and Balluffi, R.W., Phil. Mag. A 46, 6373 (1982).Google Scholar
26. Liou, K.Y. and Peterson, N.L., Mat. Sci. Res. 14, 189198 (1981).Google Scholar
27. Tighe, N.J. and Kreglo, J.R., Am. Cer. Soc. Bull. 49 (2), 188192 (1970).Google Scholar
28. Ostyn, K.M. and Carter, C.B., Character of Grain Boundaries, Advances in Ceramics Vol. 6 (Am. Cer. Soc, Columbus, OH 1983) pp. 4456.Google Scholar
29. Shaw, T.M. and Carter, C.B., Scripta Met. 16, 14311436 (1982).Google Scholar
30. Poteat, L.E. and Yust, C.S., Ceramic Microstrnctnres, Ed. by Fulrath, R. Pask, J.. (Wiley and Sons, NY 1968) pp. 642656.Google Scholar
31. Tighe, N.J. and Hyman, A., Anisotropy in Single Crystal Refractory Compounds. Vol. III. Ed. by Valhdiek, F. and Mersol, S., (Plenum Press, NY 1968), pp. 121136.Google Scholar
32. Carter, C.B., Kohlstedt, D.L., and Sass, S.L., J. Am. Cer. Soc, 63, (11120), 623–627 (1980).Google Scholar
33. Fortunee, R.P., Grain Boundary Structures in α-Al2O3, M.S. Thesis, Case Western Reserve University, Cleveland, OH (1981).Google Scholar
34. Morrisey, K.J. and Carter, C.B., J. Am. Cer. Soc., 67, (4), 292301 (1984).Google Scholar
35. Lartigue, S. and Priester, L., Suppl. J. of Physique Colloque N°4, 46, 101106 (1985).Google Scholar
36. Morrisey, K.J. and Carter, C.B., Character of Grain Boundaries. Adv. in Cer. Vol. 6, (Am. Cer. Soc., Columbus, OH 1983) pp. 8595.Google Scholar
37. Morrisey, K.J. and Carter, C.B., Structure and Properties of MgO and Al2O3 Ceramics. Adv. in Cer. Vol 10, (Am. Cer. Soc., Columbus, OH 1985) pp. 303323.Google Scholar
38. Hanson, S.C. and Phillips, D.S., Phil. Mag. A, 47 (2), 209234 (1983).Google Scholar
39. Li, C.W. and Kingery, W.D., Structure and Properties of MgO and Al2O3 Ceramics. Adv. in Cer. Vol. 10, (Am. Cer. Soc., Columbus, OH 1985) pp. 368378.Google Scholar
40. Li, C.W. and Garrett-Reed, T. (private communication).Google Scholar
41. Jupp, R.S. and Pletka, B.J. (unpublished work).Google Scholar