Hostname: page-component-cd9895bd7-7cvxr Total loading time: 0 Render date: 2025-01-02T20:54:00.233Z Has data issue: false hasContentIssue false

Graphene in plastic packages: A low cost construction method for resistive chemical sensors

Published online by Cambridge University Press:  30 March 2012

Silpa Kona
Affiliation:
Electrical and Computer Engineering, University of Louisville, Louisville, KY, 40292, U.S.A.
Cindy K Harnett
Affiliation:
Electrical and Computer Engineering, University of Louisville, Louisville, KY, 40292, U.S.A.
Get access

Abstract

The discovery of carbon nanotubes and subsequently graphene has led to an interest in carbon materials as sensing elements due to their unique properties. Graphene is a 2-dimensional material that has a large surface area (~2630 m2g-1) that can be exposed to surface adsorbates from a target gas. This enables studies on the interaction of gas molecules with the graphene surface and resulting changes in its properties, making graphene an excellent sensing element. We present our graphene based sensor with the focus on designing small, cost effective and reliable sensors with high sensitivity towards the target gas, detailing the assembly of graphene/acrylic based devices, their characterization and investigation of their performance as resistive chemical sensors

Type
Research Article
Copyright
Copyright © Materials Research Society 2012

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Geim, A. K. and Kim, P., Scientific American, 298, 90 (2008)Google Scholar
2. Chen, J. H., Jang, C., Xiao, S., Ishigami, M. and Fuhrer, M. S., Nat. Nanotechnol. 3,206 (2008)Google Scholar
3. Geim, A. K. and Novoselov, K. S., Nat. Mater. 6, 183 (2007)Google Scholar
4. Schedin, F., Geim, A. K., Morozov, S. V., Hill, E. W., Blake, P., Katsnelson, M. I. and Novoselov, K. S., Nat. Mater. 6, 652 (2007)Google Scholar
5. Lin, Y.-M. and Avouris, P., Nano. Lett. 8, 2119 (2008)Google Scholar
6. Zhang, Y., Tan, Y.-W., Stormer, H. L. and Kim, P., Nature. 438, 201 (2005)Google Scholar
7. Novoselov, K. S., Geim, A. K., Morozov, S. V., Jiang, D., Katsnelson, M. I., Grigorieva, I. V., Dubonos, S. V. and Firsov, A. A., Nature, 438, 197 (2005)Google Scholar
8. Novoselov, K. S., Geim, A. K., Morozov, S. V., Jiang, D., Zhang, Y., Dubonos, S. V., Grigorieva, I. V. and Firsov, A. A., Science, 306, 666 (2004)Google Scholar
9. Li, X., Cai, W., An, J., Kim, S., Nah, J., Yang, D., Piner, R., Velamakanni, A., Jung, I., Tutuc, E., Banerjee, S. K., Colombo, L. and Ruoff, R. S., Science, 324, 1312 (2009)Google Scholar
10. Borysiak, M., NNIN REU Res. Accomplishments. 70 (2009)Google Scholar
11. Bansal, T., PhD. Thesis, University of Louisville, 2011 Google Scholar
12. Lee, Y., Bae, S., Jang, H., Jang, S., Zhu, S. E., Sim, S. H., Song, Y. I., Hong, B. H. and Ahn, J. H., Nano. Lett. 10, 490 (2010)Google Scholar
13. Caldwell, J. D., Anderson, T. J., Culbertson, J. C., Jernigan, G. G., Hobart, K. D., Kub, F. J., Tadjer, M. J., Tedesco, J. L., Hite, J. K., Mastro, M. A., Myers-Ward, R. L., Eddy, C. R., Campbell, P. M. and Gaskill, D. K., ACS Nano. 4, 1108(2010)Google Scholar
14. Bae, S., Kim, H., Lee, Y., Xu, X., Park, J.-S., Zheng, Y., Balakrishnan, J., Lei, T., Ri Kim, H., Song, Y. I., Kim, Y.-J., Kim, K. S., Ozyilmaz, B., Ahn, J.-H., Hong, B. H. and Iijima, S., Nat.Nanotechnol. 5, 574 (2010)Google Scholar
15. Habu, S. and Yoshihiro, Y., Ind. Eng. Chem. Process Des. Dev. 21, 511 (1982)Google Scholar
16. Novoselov, K. S., Jiang, D., Schedin, F., Booth, T. J., Khotkevich, V. V., Morozov, S. V. and Geim, A. K., PNAS. 102, 10451 (2005)Google Scholar
17. Ni, Z. H., Wang, H. M., Kasim, J., Fan, H. M., Yu, T., Wu, Y. H., Feng, Y. P. and Shen, Z. X., Nano Lett. 7, 2758 (2007)Google Scholar
18. Rao, F., Fan, Z., Dong, L. and Li, W., 2010 IEEE 4th International Conference on Nano/Molecular Medicine and Engineering (NANOMED), 172 (2010)Google Scholar
19. Adam, S., Hwang, E.H., Galitski, M. and Sharma, S.D., PNAS. 104, 18392(2007)Google Scholar
20. Romero, H. E., Shen, N., Joshi, P., Gutierrez, H. R., Tadigadapa, S. A., Sofo, J O. and Eklund, P.C., ACS Nano. 2, 2037(2008)Google Scholar
21. Geringer, V., Subramaniam, D., Michel, A. K., Szafranek, B., Schall, D., Georgi, A., Mashoff, T., Neumaier, D., Liebmann, M., and Morgenstern, M., Appl.Phys.Lett. 96,082114 (2010)Google Scholar