Hostname: page-component-745bb68f8f-cphqk Total loading time: 0 Render date: 2025-01-07T18:34:33.385Z Has data issue: false hasContentIssue false

Growth and characterization of semipolar InGaN/GaN multiple quantum wells and light-emitting diodes on (10 11) GaN templates

Published online by Cambridge University Press:  01 February 2011

Arpan Chakraborty*
Affiliation:
arpan@ece.ucsb.edu, UCSB, ECE Department, UCSB, Santa Barbara, California, 93106-9560, United States
Get access

Abstract

InGaN/GaN MQW samples were grown by metal organic chemical vapor deposition (MOCVD) on (10-1-1) oriented GaN templates. Effects of growth temperature and reactor pressure on the photoluminescence (PL) properties were investigated. The emission intensity improved significantly when the QWs were grown at 100 Torr, compared to higher pressure growths. The effect of well-width on the luminescence properties was investigated and an optimum well width of 40 Å was determined. Excitation dependent PL measurements revealed no shift in the PL emission wavelength suggesting the absence of electric field in the quantum wells. Furthermore, LEDs fabricated on (1011) GaN templates, emitting at 439 nm, showed no shift in the EL emission wavelength with the increase in drive current, reconfirming the absence of polarization.

Type
Research Article
Copyright
Copyright © Materials Research Society 2006

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

[1] Nakamura, S. and Fasol, G., The Blue Laser Diode, Springer, Heidelberg (1997).CrossRefGoogle Scholar
[2] Pearton, S. J., Zolper, J. C., Shul, R. J., and Ren, F., J. Appl. Phys. 86 (1999) 1.CrossRefGoogle Scholar
[3] Bernardini, F., Fiorentini, V., and Vanderbilt, D., Phys. Rev. B 56 (1997) R10024.CrossRefGoogle Scholar
[4] Miller, D. A. B., Chemla, D. C., Damen, T. C., Grossard, A. C., Wiegmann, W., Wood, T. H., and Burrus, C. A., Phys. Rev. B 32 (1985) 1043.CrossRefGoogle Scholar
[5] Takeuchi, T., Sota, S., Katsuragawa, M., Komori, M., Takeuchi, H., Amano, H., and Akasaki, I., Jpn. J. Appl. Phys., Part 2 36 (1997) L382.CrossRefGoogle Scholar
[6] Takeuchi, T., Amano, H., and Akasaki, I., Jpn. J. Appl. Phys., 39, (2000) 413.CrossRefGoogle Scholar
[7] Kamiyama, S., Honshio, A., Kitano, T., Iwaya, M., Amano, H., Akasaki, I., Kinoshita, H., and Shiomi, H., Phys. Stat. Sol. (c), 2, 2121 (2005).CrossRefGoogle Scholar
[8] Baker, T., Haskell, B., Wu, F., Fini, P., Speck, J. S., and Nakamura, S., Jpn. J. Appl. Phys., 44, L920 (2005)CrossRefGoogle Scholar
[9] Baker, T., Haskell, B., Wu, F., Fini, P., Speck, J. S., and Nakamura, S., (unpublished).Google Scholar
[10] Chakraborty, A., Baker, T., Haskell, B., Wu, F., Speck, J. S., DenBaars, S. P., Nakamura, S., and Mishra, U. K., Jpn. J. Appl. Phys., 44, L945 (2005).CrossRefGoogle Scholar
[11] Park, S. H. and Chuang, S. L., Phys. Rev. B, 59, 4725 (1999).CrossRefGoogle Scholar
[12] Leszczynski, M., Teisseyre, H., Suski, T., Grzegory, I., Bockowski, M., Jun, J., Porowski, S., Pakula, K., Baranowski, J. M., Foxon, C. T. and Cheng, T. S., Appl. Phys. Lett., 69, 73 (1996)CrossRefGoogle Scholar
[13] Wright, A. F., J. Appl. Phys., 82, 2833 (1997)CrossRefGoogle Scholar
[14] Abare, A., Ph.D. Thesis, University of California, Santa Barbara (2000).Google Scholar
[15] Keller, S., Keller, B. P., Kapolnek, D., Abare, A. C., Masui, H., Coldren, L. A., Mishra, U. K., and Den Baars, S. P., Appl. Phys. Lett. 68, 3147 (1996)CrossRefGoogle Scholar