Hostname: page-component-745bb68f8f-l4dxg Total loading time: 0 Render date: 2025-01-15T06:49:17.245Z Has data issue: false hasContentIssue false

The Growth Of Thin Ti Films on Si(111)-(7×7) Surfaces

Published online by Cambridge University Press:  15 February 2011

Adli A. Saleh
Affiliation:
Physics Department, Montana State University, Bozeman, MT 59717
D. Peterson
Affiliation:
Physics Department, Montana State University, Bozeman, MT 59717
Get access

Abstract

A study of the room-temperature growth of ultrathin Ti films (up to 7 ML) on clean and atomically flat Si(111)- (7×7) surfaces using Auger electron spectroscopy (AES) and low energy electron diffraction (LEED) is presented. The variations in the Auger signal due to Si L2.3VV with binding energy of 92 eV are used to model the growth morphology of this system. These measurements indicate the growth of an initial disordered and continuous Ti film of up to 1.6 ML in thickness, where the LEED pattern completely disappears and the Si Auger signal is strongly attenuated. As more Ti is deposited, this is followed by the disintegration of the continuous film and the formation of an intermixed Ti/Si film. This is evidenced by a change in the slope of the Auger signal time (AST) plot, and the reappearance of the LEED pattern. The modification in the overlayer composition for films thicker than 1.6 ML is confirmed by a change in the Si L2.3VV Auger peak that resembles the peak shape due to TiSi2.

Type
Research Article
Copyright
Copyright © Materials Research Society 1996

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Wang, M.H. and Chen, L.J., Appl. Phys. Lett. 59, 2460 (1991).Google Scholar
2. Xu, F., Hill, D. M., Binning, P.J., J. Vac. Sci. Technol. A 7, 2593 (1989).Google Scholar
3. Jin, S., Aindow, M., Chen, L.J., J. Mater. Res. 10, 891 (1995).Google Scholar
4. Franciosi, A. and Weaver, J.H., Physica 117B&118B, 846 (1983).Google Scholar
5. Hung, L.S., Gyulai, J., Mayer, J.W., Lau, S.S., and Nicolet, M.-A., J. Appl. Phys. 54, 5076 (1983).Google Scholar
6. van Loenen, E.J., Fischer, A.E.M.J., and van der Veen, J.F., Surf. Sci. 155, 65 (1985).Google Scholar
7. Iwami, M., Hashimoto, S. and Hiraki, A., Solid State Commun. 94, 459 (1984).Google Scholar
8. Butz, R., Rubloff, G.W., Tan, T.Y., and Ho, P.S., Phys. Rev. B 30, 5421 (1984).Google Scholar
9. Roth, John A. and Crowell, C.R., J. Vac. Sci. Technol. 15, 1317 (1978).Google Scholar
10. Namba, Y. and Mori, T., J. Vac. Sci. Technol. A 4, 1884 (1986).Google Scholar
11. Seah, M. P. and Dench, W. A., Surface and Interface Analysis, 1, 2 (1979).Google Scholar
12. Ossincini, Steffano, Memeo, Rossella, Ciccacci, Franco, J. Vac. Sci. Technol. A 3, 387 (1985).Google Scholar
13. Ziegler, J.F., He Stopping Powers and Ranges in All Elements (Pergamon, New York, 1977).Google Scholar
14. Shutthanandan, V., Saleh, Adli A., Denier van der Gon, A.W., Smith, R.J., Phys. Rev. B 48, 18292 (1993).Google Scholar
15. Svechnikov, V.N., Kocherzhinskii, Yu.A., Yupko, L.M., Kulik, O.G., Shishkin, E.A., Doklady Akademii Nauk, SSSR 193, 393 (1970).Google Scholar
16. Bauer, E. and van der Merwe, J.H., Phys. Rev. B 33, 3657 (1986).Google Scholar
17. Mezey, L.Z. and Giber, J., Jpn. J. Appl. Phys. 21, 1569 (1982).Google Scholar