Hostname: page-component-cd9895bd7-fscjk Total loading time: 0 Render date: 2025-01-05T02:02:59.245Z Has data issue: false hasContentIssue false

Hetero-Epitaxial Structures of Litao3 Thin Films

Published online by Cambridge University Press:  15 February 2011

L.-S. Hung*
Affiliation:
Imaging Research and Advanced Development, Eastman Kodak Company, Rochester, NY 14650-2110
Get access

Abstract

We have grown epitaxial thin films of LiTaO3 on various substrates. LiTaO3 grows epitaxially on (111) GaAs and forms a waveguide with its underlying buffer layer of MgO, providing a desirable structure for monolithic integration. LiTaO3 grows on LiNbO3 with a buffer layer of magnesium niobate or magnesium tantalate to form an optical waveguide structure having good lattice matching and pronounced differences in refractive index. This heterostructure has the potential for reducing crystal imperfection of waveguides and improving optical confinement. We also describe a multilayer structure using an epitaxial conducting layer as a bottom electrode to grow a nonlinear optical waveguide on LiNbO3 for waveguide switching and modulation. Both light-absorbing metals and transparent metallic oxides are employed. Ion channeling and x-ray diffraction reveal high crystalline quality of the hetero-epitaxial structures. The influence of surface polarity, thermal expansion, and lattice matching on waveguiding LiTaO3 thin films is addressed.

Type
Research Article
Copyright
Copyright © Materials Research Society 1996

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Stegeman, G. I. and Stolen, R. H., J. Opt. Soc. Am. B6, 652 (1989).Google Scholar
2. Thylen, T., J. Lightwave Tech. 6, 847 (1988).Google Scholar
3. Kanata, T., Kobayashi, Y., and Kubota, K., J. Appl. Phys. 62, 2989 (1987).Google Scholar
4. Enomoto, R., Yamada, M., U. S. Patent No. 5 158 823 (1992).Google Scholar
5. Agostinelli, J. A., Braunstein, G. H., and Blanton, T. N., Appl. Phys. Lett. 63, 123 (1993).Google Scholar
6. Wernberg, A. A., Braunstein, G. H., and Gysling, H. J., Appl. Phys. Lett. 63, 2649 (1993).Google Scholar
7. Wernberg, A. A., Braunstein, G. H., and Gysling, H. J., J. Crystal Growth 140, 57 (1994).Google Scholar
8. Yamada, M., Nada, N., Saitoh, M., and Watanabe, K., Appl. Phys. Lett. 62, 435 (1993).Google Scholar
9. Xie, H., Hsu, W.-Y., and Raj, R., J. Appl. Phys. 77, 3420 (1995).Google Scholar
10. Powder diffraction file (International Centre for Diffraction Data, USA, 1992).Google Scholar
11. Hung, L. S., Agostinelli, J. A., Mir, J. M., and Zheng, L. R., Appl. Phys. Lett. 62, 3071 (1993).Google Scholar
12. Fork, D. K. and Anderson, G. B., Appl. Phys. Lett. 63, 1029 (1993).Google Scholar
13. Marcuse, D., IEEE J. Quantum Electron. QE–18, 393, (1982).Google Scholar
14. Lee, M.-B., Kawasaki, M., Yoshimoto, M., and Koinuma, H., Appl. Phys. Lett. 66, 1331 (1995).Google Scholar
15. Ramesh, R., Inam, A., Chan, W. K., Wilkens, B., Myers, K., Remschnig, K., Hart, D. L., and Tarascon, J. M., Science 252, 944 (1991).Google Scholar
16. Ghonge, S. G., Goo, E., Ramesh, R., Haakenaasen, R., and Fork, D. K., Appl. Phys. Lett. 64, 3407 (1994)Google Scholar
17. Hung, L. S. and Bosworth, L. A., Appl. Phys. Lett. 62, 2625 (1993).Google Scholar
18. Yano, Y., Lijima, K., Daitoh, Y., Terashima, T., Bando, Y., Watanabe, Y., Kasatani, H., and Terauchi, H., J. Appl. Phys. 76, 7833 (1984).Google Scholar
19. Kanno, I., Hayashi, S., Kitagawa, M., Takayama, R., and Hirao, T., Appl. Phys. Lett. 66,145 (1995).Google Scholar
20. Paradis, E. L. and Shuskus, A. J., Thin Solid Films, 38 131 (1976).Google Scholar