Hostname: page-component-745bb68f8f-d8cs5 Total loading time: 0 Render date: 2025-01-15T07:08:09.875Z Has data issue: false hasContentIssue false

Highly Mismatched Alloys for Intermediate Band Solar Cells

Published online by Cambridge University Press:  01 February 2011

W. Walukiewicz
Affiliation:
Materials Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720
K. M. Yu
Affiliation:
Materials Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720
J Wu
Affiliation:
Department of Chemistry and Chemical Biology, Harvard University, Cambridge, MA 02138.
J. W. Ager III
Affiliation:
Materials Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720
W. Shan
Affiliation:
Materials Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720
M. A. Scrapulla
Affiliation:
Materials Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720 Department of Materials Science and Engineering, University of California, Berkeley, CA 94720
O. D. Dubon
Affiliation:
Materials Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720 Department of Materials Science and Engineering, University of California, Berkeley, CA 94720
P. Becla
Affiliation:
Department of Materials Science and Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139
Get access

Abstract

It has long been recognized that the introduction of a narrow band of states in a semiconductor band gap could be used to achieve improved power conversion efficiency in semiconductor-based solar cells. The intermediate band would serve as a “stepping stone” for photons of different energy to excite electrons from the valence to the conduction band. An important advantage of this design is that it requires formation of only a single p-n junction, which is a crucial simplification in comparison to multijunction solar cells. A detailed balance analysis predicts a limiting efficiency of more than 50% for an optimized, single intermediate band solar cell. This is higher than the efficiency of an optimized two junction solar cell. Using ion beam implantation and pulsed laser melting we have synthesized Zn1-yMnyOxTe1-x alloys with x<0.03. These highly mismatched alloys have a unique electronic structure with a narrow oxygen-derived intermediate band. The width and the location of the band is described by the Band Anticrossing model and can be varied by controlling the oxygen content. This provides a unique opportunity to optimize the absorption of solar photons for best solar cell performance. We have carried out systematic studies of the effects of the intermediate band on the optical and electrical properties of Zn1-yMnyOxTe1-x alloys. We observe an extension of the photovoltaic response towards lower photon energies, which is a clear indication of optical transitions from the valence to the intermediate band.

Type
Research Article
Copyright
Copyright © Materials Research Society 2005

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1 Chiang, P. K., Ermer, J. H., Nishikawa, W. T., Krut, D. D., Joslin, D. E., Eldredge, J. W., Cavicchi, B. T., Olson, J. M., Proc. 25th IEEE Photovoltaic Specialists Conference (IEEE New York, 1996) p. 183.Google Scholar
2 Kurtz, S. R., Myers, D., Olson, J. M, Proc. 26th IEEE Photovoltaic Specialists Conf., (IEEE, New York, 1997) p 875.Google Scholar
3 Wolf, M., Proc. IRE 48, 1246 (1960).Google Scholar
4 Luque, A., Marti, A.., Phys. Rev. Lett. 78, 5014 (1997).Google Scholar
5 Brown, A. S., Green, M. A. and Corkish, R. P., Physica E 14, 121, (2002).Google Scholar
6 Cuadra, L., Marti, A., and Luque, A., Thin Solid Films 451-452, 593 (2004).Google Scholar
7 Shan, W., Walukiewicz, W., Ager, J. W. III, Haller, E. E., Geisz, J. F., Friedman, D. J., Olson, J. M., and Kurtz, S. R., Phys. Rev. Lett. 82, 1221(1999).Google Scholar
8 Walukiewicz, W., Shan, W., Yu, K. M., Ager, J. W. III, Haller, E. E., Miotlowski, I., Seong, M. J., Alawadhi, H., and Ramdas, A. K., Phys. Rev. Lett. 85, 1552 (2000).Google Scholar
9 Wu, J., Shan, W. and Walukiewicz, W., Semicond. Sci. Tech. 17, 860 (2002).Google Scholar
10see for example, Semiconductor Science and Technology 17, 2002, Special Issue: III-N-V Semiconductor Alloys.Google Scholar
11 Yu, K. M., Walukiewicz, W., Wu, J., Shan, W., and Beeman, J. W., Scarpulla, M. A., Dubon, O. D., and Becla, P., J. Appl. Phys. 95, 6232 (2004).Google Scholar
12 Yu, K. M., Walukiewicz, W., Wu, J., Shan, W., and Beeman, J. W., Scarpulla, M. A., Dubon, O. D., and Becla, P., Phys. Rev. Lett. 91, 246203 (2003)Google Scholar
13 White, C. W. and Peercy, P. S., eds., Laser and Electron Beam Processing of Materials (Academic Press, New York, 1980).Google Scholar
14 Williams, J. S. in Laser Annealing of Semiconductors, Poate, J. M. and Mayer, J. W., eds., p. 385 (Academic Press, New York, 1982).Google Scholar
15 Yu, K. M., Walukiewicz, W., Scarpulla, M. A., Dubon, O. D., Jasinski, J., Liliental-Weber, Z., Wu, J., Beeman, J. W., Pillai, M. R., and Aziz, M. J., J. Appl. Phys. 94, 1043 (2003).Google Scholar
16 Scarpulla, M. A., Yu, K.M., Monteiro, O., Pillai, M., Ridgway, M.C., Aziz, M.J., and Dubon, O.D., Appl. Phys. Lett. 82, 1251 (2003).Google Scholar
17 Aspnes, D. E., Surf. Sci. 37, 418 (1973).Google Scholar
18 Seong, M. J., Alawadhi, H., Miotkowski, I., Ramdas, A. K. and Miotkowska, S., Phys. Rev. B60, R16275(1999).Google Scholar
19 Shan, W., Walukiewicz, W., Ager, J.W. III, Yu, K. M., Wu, J., Haller, E. E., Nabetani, Y., Mukawa, T., Ito, Y., and Matsumoto, T., Appl. Phys. Lett. 83, 299 (2003).Google Scholar
20 Shockley, W. and Queisser, H. J.,. J. Appl. Phys. 32, 510 (1961).Google Scholar
21 Yu, K. M., Walukiewicz, W., Shan, W., Ager, J. W. III, Wu, J., Haller, E. E., Geisz, J. F., Friedman, D. J., Olson, J. M., and Kurtz, Sarah R., Phys. Rev. B61, R13337 (2000).Google Scholar