Hostname: page-component-cd9895bd7-jkksz Total loading time: 0 Render date: 2025-01-01T11:13:46.657Z Has data issue: false hasContentIssue false

Hydrogen Passivation of Defects in Crystalline Silicon Solar Cells

Published online by Cambridge University Press:  31 January 2011

Michael Stavola
Affiliation:
mjsa@Lehigh.edu, Lehigh University, Physics, Bethlehem, Pennsylvania, United States
Fan Jiang
Affiliation:
fjiang04@gmail.com, Lehigh University, Physics, Bethlehem, Pennsylvania, United States
Suppawan Kleekajai
Affiliation:
sarah.kleekajai@gmail.com, Lehigh University, Physics, Bethlehem, Pennsylvania, United States
Lanlin Wen
Affiliation:
law305@Lehigh.edu, Lehigh University, Physics, Bethlehem, Pennsylvania, United States
Chao Peng
Affiliation:
chp205@Lehigh.edu, Lehigh University, Physics, Bethlehem, Pennsylvania, United States
Vijay Yelundur
Affiliation:
vyelundur@suniva.com, Georgia Institute of Technology, School of Electrical Engineering, Atlanta, Georgia, United States
Ajeet Rohatgi
Affiliation:
ajeet.rohatgi@ece.gatech.edu, Georgia Institute of Technology, School of Electrical Engineering, Atlanta, Georgia, United States
Giso Hahn
Affiliation:
Giso.Hahn@uni-konstanz.de, University of Konstanz, Physics, Konstanz, Germany
Lode Carnel
Affiliation:
Lode.Carnel@recgroup.com, REC Wafer AS, Porsgrunn, Norway
Juris Kalejs
Affiliation:
jpkalejs1@aol.com, American Capital Energy, N. Chelmsford, Massachusetts, United States
Get access

Abstract

Hydrogen is commonly introduced into silicon solar cells to reduce the deleterious effects of defects and to increase cell efficiency. We have developed strategies by which hydrogen in silicon can be detected by IR spectroscopy with high sensitivity. The introduction of hydrogen into Si by the post-deposition annealing of a hydrogen-rich, SiNx coating has been investigated to determine hydrogen's concentration and penetration depth. Different hydrogenation processes were studied so that their effectiveness for the passivation of bulk defects could be compared. The best conditions investigated in our experiments yielded a hydrogen concentration near 1015 cm-3 and a diffusion depth consistent with the diffusivity of H found by Van Wieringen and Warmoltz.

Type
Research Article
Copyright
Copyright © Materials Research Society 2010

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1 Hahn, G. and Schöuml;necker, A., J. Phys. Condens. Matter 16, R1615 (2004).10.1088/0953-8984/16/50/R03Google Scholar
2 Buonassisi, T. Istratov, A. A. Pickett, M. D. Heuer, M. Kalejs, J. P. Hahn, G. Marcus, M. A. Lai, B. Cai, Z., Heald, S. M. Ciszek, T. F. Clark, R. F. Cunningham, D. W. Gabor, A. M. Joncyk, R. Narayanan, S., Sauar, E. and Weber, E. R. Prog. Photovolt.: Res. Appl. 14, 513 (2006).Google Scholar
3 Stoddard, N. Wu, B. Maisano, L. Russell, R. Creager, J. Clark, R. and Fernandez, J.M. Proc. 18th Workshop on Crystalline Silcon Solar Cells and Modules, Vail, CO, Aug. 3-6, 2008, p. 7 Google Scholar
4 Aberle, A. G. Sol. Energy Mater. Sol. Cells 65, 239 (2001) reviews the SiNx passivation of c-Si solar cells and includes a historical overview.Google Scholar
5 Duerinckx, F. and Szlufcik, J. Sol. Energy Mater. Sol. Cells 72, 231 (2002).Google Scholar
6 Cuevas, A. Kerr, M. J. and Schmidt, J. Proc. 3rd World Conf. on Photovoltaic Energy Conversion (IEEE Cat. No. 03CH37497), p. 913 (2003).Google Scholar
7H. Dekkers, F. W. Dissertation, Catholic University of Leuven, 2008.Google Scholar
8 Sze, S. M. Physics of Semiconductor Devices, 2nd. Ed. (Wiley, New York, 1981).Google Scholar
9 Huster, F. Proc. 20th European Photovoltaic Solar Energy Conference, Barcelona, 2005, p. 1466.Google Scholar
10 Seager, C. H. and Ginley, D. S. Appl. Phys. Lett. 34, 337 (1979).Google Scholar
11 Seager, C. H. Sharp, D. J. Panitz, J. K. G. D'Aiello, R. V., J. Vac. Sci. Technol. 20, 430 (1982).Google Scholar
12 Hanoka, J. I. Seager, C. H. Sharp, D. J. and Panitz, J. K. G. Appl. Phys. Lett. 42, 618 (1983).Google Scholar
13 Benton, J. L. Doherty, C. J. Ferris, S. D. Flamm, D. L. Kimerling, L. C. and Leamy, H. J. Appl. Phys. Lett. 36, 670 (1980).Google Scholar
14 Pearton, S. J. Corbett, J. W. and Stavola, M. Hydrogen in Crystalline Semiconductors (Springer-Verlag, Berlin, 1992).Google Scholar
15 Dubé, C. and Hanoka, J. I. Appl. Phys. Lett. 45, 1135 (1984).Google Scholar
16 Hezel, R. and Schörner, R., J. Appl. Phys. 52, 3076 (1981).Google Scholar
17 Dekkers, H. F. W. DeWolf, S. Agostinelli, G. Szlufcik, J. Pernau, T. Arnoldbik, W.M. Goldbach, H.D., Schropp, R. E. I.. Proc. 3rd World Conf. on Photovoltaic Energy Conversion (IEEE Cat. No. 03CH37497), p. 983 (2003).Google Scholar
18Hydrogen could be detected by SIMS in Si samples containing a high concentration of O precipitates. See, Hahn, G. Karg, D. Schönecker, A., Burgers, A. R. Ginige, R. and Cherkaoui, K. Conf. Rec. of the 31st IEEE Photovoltaic Specialist Conference (IEEE Cat. No. 05CH37608), p. 1035 (2005); G. Hahn A. Schönecker, A. R. Burgers R. Ginige K. Cherkaoui and D. Karg Proc. 20th European Photovoltaic Solar Energy Conf., Barcelona, p. 717 (2005).Google Scholar
19 Boehme, C. and Lucovsky, G. J. Appl. Phys. 88, 6055 (2000); J. Vac. Sci. Technol. A 19, 2622 (2001).Google Scholar
20 Jiang, F. Stavola, M. Rohatgi, A. Kim, D. Holt, J. Atwater, H. Kalejs, J. Appl. Phys. Lett. 83, 931 (2003).Google Scholar
21 Kleekajai, S. Jiang, F. Stavola, M. Yelundur, V. Nakayashiki, K. Rohatgi, A. Hahn, G. Seren, S. and Kalejs, J. J. Appl. Phys. 100, 093517 (2006).Google Scholar
22An alternative probe of the hydrogenation of Si from a SiNx coating has recently been developed. In this method, SIMS is used to detect deuterium that has diffused from a deuterated SiNx coating through a Si substrate to an amorphous-Si trapping layer deposited on the substrate's back surface. M. Sheoran, Kim, D. S. Rohatgi, A. Dekkers, H. F. W. Beaucarne, G. Young, M. and Asher, S. Appl. Phys. Lett. 92, 172107 (2008).Google Scholar
23 Uftring, S. J. Stavola, M. Williams, P.M. and Watkins, G.D. Phys. Rev. B 51, 9612 (1995).Google Scholar
24 Weinstein, M. G. Stavola, M. Stavola, K. L. Uftring, S. J. Weber, J. Sachse, J.-U. and Lemke, H. Phys. Rev. B 65, 035206 (2002).Google Scholar
25 Hilali, M. M. Rohatgi, A. and Asher, S. IEEE Trans. Electron Devices 51, 948 (2004).Google Scholar
26 Yelundur, V. Rohatgi, A. Jeong, J.-W. and Hanoka, J. I. IEEE Trans. Electron Devices 49, 1405 (2002).Google Scholar
27 Rohatgi, A. Kim, D. S. Nakayashiki, K. Yelundur, V. and Rounsaville, B. Appl. Phys. Lett. 84, 145 (2004).Google Scholar
28 Nakayashiki, K. Rohatgi, A. Ostapenko, S. and Tarasov, I. J. Appl. Phys. 97, 024504 (2005).Google Scholar
29 Wieringen, A. Van, and Warmoltz, N. Physica 22, 849 (1956).Google Scholar
30 Stavola, M. in Properties of Crystalline Si, edited by Hull, R. (INSPEC, London, 1999), p. 511.Google Scholar
31 Hong, J. Kessels, W.M. M. Soppe, W. J. Weeber, A. W. Arnoldbik, W. M. Sanden, M. C. M. van de, J. Vac. Sci Technol. B 21, 2123 (2003).Google Scholar
32 Weeber, A. W. Rieffe, H. C. Romijn, I. G. Sinke, W. C. Soppe, W. J. Conf. Rec. of the 31st IEEE Photovoltaic Specialist Conference (IEEE Cat. No. 05CH37608), p. 1043 (2005).Google Scholar
33 Romijn, I. G. Soppe, W. J. Rieffe, H. C. Sinke, W. C. and Weeber, A. W. 15th Workshop on Crystalline Silicon Solar Cells and Modules: Materials and Processes, Vail, Colorado, Aug., 2005, Program, Extended Abstracts, and Papers, p. 85, unpublished.Google Scholar
34 Dekkers, H. F. W. Carnel, L. and Beaucarne, G. Appl. Phys. Lett. 89, 013508 (2006).Google Scholar
35 Dekkers, H. F. W. Beaucarne, G. Hiller, M. Charifi, H. and Slaoui, A. Appl. Phys. Lett. 89, 211914 (2006).Google Scholar
36 Dekkers, H. F. W. DeWolf, S. Agostinelli, G. Duerinckx, F. and Beaucarne, G. Solar Energy Materials and Solar Cells 90, 3244 (2006).Google Scholar
37 Kleekajai, S. Wen, L. Peng, C. Stavola, M. Yelundur, V. Nakayashiki, K. Rohatgi, A. and Kalejs, J. J. Appl. Phys., submitted.Google Scholar
38The Si-N bond density discussed in the present paper for high-density SiNx films is approximately equal to the optimal value reported in Refs. 32 and 33. The calibration factor reported in Bustarret, E. Bensouda, M. Habrard, M. C. Bruyère, J. C., Poulin, S. Gujrathi, S. C. Phys. Rev. B 38, 8171 (1988), [Si-N] = 2x1019 cm-2 x I.A., was used to determine the Si-N bond density, similar to Refs. 32 and 33.Google Scholar
39The results reported here can depend on the trap density in the Si substrate. For example, in oxygenrich RGS Si that was deuterated from a SiNx:D surface layer, deuterium could be detected by SIMS with a concentration above 1016 cm-3 due to the strong trapping of deuterium by oxygen precipitates in the material. The indiffusion depth of deuterium was also reduced in this case. See Ref. [18].Google Scholar
40 Hourahine, B. Jones, R. öberg, S., Briddon, P. R. Markevich, V. P. Newman, R. C. Hermansson, J. Kleverman, M., Lindström, J. L., Murin, L. I. Fukata, N. and Suezawa, M. Physica B 308-310, 197 (2001).Google Scholar
41 McAfee, J. L. and Estreicher, S. K. Physica B 340-342, 637 (2003).Google Scholar