Hostname: page-component-745bb68f8f-hvd4g Total loading time: 0 Render date: 2025-01-15T07:01:32.297Z Has data issue: false hasContentIssue false

A Hydrogen-Bonding Based Approach to Fabricate Polymer/Inorganic Nanoparticle Multilayer Film

Published online by Cambridge University Press:  17 March 2011

Encai Hao
Affiliation:
Department of ChemistryEmory University1515 Pierce Drive Atlanta, GA 30322, U.S.A.
Tianquan Lian
Affiliation:
Department of ChemistryEmory University1515 Pierce Drive Atlanta, GA 30322, U.S.A.
Get access

Abstract

A new hydrogen-bonding based route for layer-by-layer fabrication of polymer/inorganic nanoparticle multilayer thin films was developed. Surface modification of inorganic nanoparticles can provide functional groups on the particle surface, e.g. pyridine, carboxyl, and flavin. A polymer/inorganic nanoparticle multilayer film can be fabricated in a layer-by-layer manner using the hydrogen-bonding interaction between the functional groups on the surface of nanoparticles and polymers. The multilayer buildup was monitored by UV-visible spectroscopy, which showed a linear increase of the film absorbance with the number of adsorbed nanoparticle layers. FTIR spectroscopy was used to verify hydrogen bonding between polymer and nanoparticles, which is believed to be the driving force for the formation of polymer/nanoparticle multilayer thin films.

Type
Research Article
Copyright
Copyright © Materials Research Society 2001

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Murray, C. B., Norris, D. J., Bawendi, M. G., J. Am. Chem. Soc. 115, 8706 (1993).Google Scholar
2. Alivisatos, A. P., J. Phys. Chem. 100, 13226 (1996).Google Scholar
3. Gao, M., Ruchter, B., Kirstein, S., Adv. Mater. 10, 802 (1998).Google Scholar
4. Colvin, V. L., Goldstein, A. N., Alivisatos, A. P., J. Am. Chem. Soc. 114, 5221 (1992).Google Scholar
5. Templeton, A. C., Wuelfing, W. P., Murray, R. W., Acc. Chem. Res. 33, 27 (2000).Google Scholar
6. Fendler, J. H., Meldrum, F. C., Adv. Mater. 7, 607 (1995).Google Scholar
7. Decher, G., Science 277, 1232 (1997).Google Scholar
8. Decher, G., Hong, J. D., Macromol. Chem., Macromol. Symp. 46, 321 (1991).Google Scholar
9. Hao, E., Wang, L., Zhang, J., Yang, B., Zhang, X., Shen, J., Chem. Lett. 5 (1999).Google Scholar
10. Xiong, H., Cheng, M., Zhou, Z., Zhang, X., Shen, J., Adv. Mater. 10, 529 (1998).Google Scholar
11. Stockton, W. B., Rubner, M. F., Macromolecules 30, 2714 (1997).Google Scholar
12. Wang, L., Wang, Z., Zhang, X., Chi, L., Fuchs, H., Macromol. Rapid Commun. 18, 509 (1997).Google Scholar
13. Spatz, J. P., Roescher, A., Möller, M., Adv. Mater. 8, 337 (1996)Google Scholar
14. Lee, J. Y., Painter, P. C., Coleman, M. M., Macromolecules 21, 954 (1988).Google Scholar
15.(a) Katim, T., Kihara, H., Uryu, T., Fujishims, A., Fréchet, J. M. J., Macromolecules 25, 6838 (1992). (b) U. Kumar, T. Kato, J. M. J. Fréchet, J. Am. Chem. Soc. 114, 6630 (1992).Google Scholar