Hostname: page-component-78c5997874-v9fdk Total loading time: 0 Render date: 2024-11-11T02:59:23.642Z Has data issue: false hasContentIssue false

Immobilization of diamond nanocrystals on graphene

Published online by Cambridge University Press:  02 December 2013

Sven Lange
Affiliation:
Institute of Physics, University of Tartu, Riia Str. 142, 51014 Tartu, Estonia
Annika Pille
Affiliation:
Institute of Physics, University of Tartu, Riia Str. 142, 51014 Tartu, Estonia
Valter Kiisk
Affiliation:
Institute of Physics, University of Tartu, Riia Str. 142, 51014 Tartu, Estonia
Tauno Kahro
Affiliation:
Institute of Physics, University of Tartu, Riia Str. 142, 51014 Tartu, Estonia
Harry Alles
Affiliation:
Institute of Physics, University of Tartu, Riia Str. 142, 51014 Tartu, Estonia
Ilmo Sildos
Affiliation:
Institute of Physics, University of Tartu, Riia Str. 142, 51014 Tartu, Estonia
Get access

Abstract

Immobilization of fluorescent nanoparticles on graphene is an important step in the assembly of certain graphene-based photonic devices as well as in optical visualization of graphene and its defects. Hereby we report a viable approach to deposit diamond nanoparticles on a wide-area graphene substrate. It is demonstrated that a suitable plasma treatment leads to a selective immobilization of deposited nanodiamond on graphene with practically no agglomeration. Absence of photoemission from the individual adsorbed diamond nanoparticles suggests an energy transfer from the excited N-V centers to graphene.

Type
Articles
Copyright
Copyright © Materials Research Society 2013 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Zhu, Y., Murali, S., Cai, W., Li, X., Suk, J. W., Potts, J. R. and Ruoff, R. S., Adv. Mater. 22, 39063924 (2010).CrossRefGoogle Scholar
Bonaccorso, F., Sun, Z., Hasan, T. and Ferrari, A. C., Nature Photonics 4, 611622 (2011).CrossRefGoogle Scholar
Xiaodi, L., et al. ., Appl. Phys. Lett. 101, 233112 (2012).Google Scholar
Hu, W., Li, Z. and Yang, J., J. Chem. Phys. 138, 054701 (2013).CrossRefGoogle Scholar
Yu, J., Liu, G., Sumant, A. V., Goyal, V. and Balandin, A. A., Nano Lett. 12, 16031608 (2012).CrossRefGoogle Scholar
Hees, J., Kriele, A. and Williams, O. A., Chem. Phys. Lett. 509, 1215 (2011).CrossRefGoogle Scholar
Petit, T., Girard, H. A., Trouvé, A., Batonneau-Gener, I., Bergonzo, P. and Arnault, J.-C., Nanoscale, 5, 8958 (2013).CrossRefGoogle Scholar
van der Zande, A.M., Barton, R. A., Alden, J. S., Ruiz-Vargas, C. S., Whitney, W. S., Pham, P. H. Q., Park, J., Parpia, J. M., Craighead, H. G. and McEuen, P. L., Nano Lett. 10, 48694873 (2010).CrossRefGoogle Scholar
Kiisk, V., Kahro, T., Kozlova, J., Matisen, L. and Alles, H., Appl. Surf. Sci. 276, 133137 (2013).CrossRefGoogle Scholar
Gokus, T., Nair, R. R., et al. ., ACS Nano 3 (2009), 39633968.CrossRefGoogle Scholar
Elias, D. C., Nair, R. R., et al. ., Science 323 (2009), 610613.CrossRefGoogle Scholar