Hostname: page-component-cd9895bd7-jkksz Total loading time: 0 Render date: 2025-01-02T17:37:17.036Z Has data issue: false hasContentIssue false

Improvements in Thallium Bromoiodide Photodetectors for Scintillation Spectrometers

Published online by Cambridge University Press:  21 February 2011

J.G. Zhang
Affiliation:
Radiation Monitoring Devices, Inc., Watertown, MA 02172
L. Cirignano
Affiliation:
Radiation Monitoring Devices, Inc., Watertown, MA 02172
K. Daley
Affiliation:
Radiation Monitoring Devices, Inc., Watertown, MA 02172
M.R. Squillante
Affiliation:
Radiation Monitoring Devices, Inc., Watertown, MA 02172
Get access

Abstract

Thallium bromoiodide, a tuneable band gap semiconductor system, was investigated as a photodetector for scintillation spectrometers. Extensive zone refining of starting materials, based on numerical simulations, considerably enhanced the electrical resistivity to 1011 Ωcm. In addition, accelerated crucible rotation technique (ACRT) crystal growth and after-growth annealing have improved the charge carrier mobility-lifetime product. However, a relatively low signal-to-noise ratio due to a high dielectric constant and relatively low quantum efficiency continues to be an obstacle to achieving high performance, large area T1BrxI1−xphotodetectors.

Type
Research Article
Copyright
Copyright © Materials Research Society 1993

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Squillante, M.R., Zhang, J.G., Zhou, C., Bennett, P. and Moy, L.P., New Compound Semiconductor Materials for Nuclear Detectors, presented at the 1993 MRS spring meeting, San Francisco, CA 1993.CrossRefGoogle Scholar
2. Markakis, J.M., IEEE Trans. Nuc. Sci., Vol. 35, No. 1, (1988) pp. 356.CrossRefGoogle Scholar
3. Derenzo, S.E., Nucl. Instr. Meth. 219, (1984) pp. 117.CrossRefGoogle Scholar
4. Shah, K. S., Lund, J.C., Olschner, F., Zhang, J., Moy, L.P., Squillante, M.R., TlBrI Photodetectors for Scintillation Spectroscopy, 1991 IEEE Nucl. Sci. Symp and Med. Imag. Conf., vol. 1 p. 192.Google Scholar
5. Pfann, W.G., Zone Melting, 2nd ed. (Kroeger, Huntington, N.Y.)(1978), pp.3639.Google Scholar
6. Shah, K. S., Lund, J.C., Olschner, F., Moy, L.P., and Squillante, M.R., IEEE Trans. on Nucl. Sci., Vol. 36, No. 1, (1989).CrossRefGoogle Scholar
7. Lund, J., Shah, K., Squillante, M. and Sinclair, F., IEEE Trans. Nucl., Vol NS–35, 1, (1988), pp. 89.CrossRefGoogle Scholar
8. Capper, P., Gosney, J.J.G. and Jones, C.L., J. Crystal Growth 70 (1984), pp. 356.CrossRefGoogle Scholar
9. Coates, W.G., Capper, P., Jones, C.I., Gosney, J.J.G., Ard, C.K., Kenworthy, I. and Clark, A., J. Crystal Growth, 94 (1989), pp. 959.CrossRefGoogle Scholar
10. Hecht, K., Z. Physik, 77, (1932), pp. 235.CrossRefGoogle Scholar
11. Zhang, J., Daley, K., Cirignano, L., Lund, J. and Squillante, M.R., DOE Final Report on T1BrI Detector for Scintillation Spectrometers.Google Scholar
12. Sze, S.M., Physics of Semiconductor Devices, 2nd Ed. John Wiley & Sons, (1981), pp. 745.Google Scholar
13. Saleh, B.E.A. and Teich, M.C., Fundamentals of Photonics, John Wiley & Sons, (1991), pp. 649.CrossRefGoogle Scholar
14. William Wolfe, L., Handbook of Military Infrared Technology, Office of Naval Research, Dept. of the Navy, (1965) pp. 329.CrossRefGoogle Scholar
15. Instruction Manual TC 170 / TC 171 FET Spectroscopy Preamp Tennelec / Nucleus, Inc., Oak Ridge, Tennessee, (1983).Google Scholar
16. Ikeda, H., Tanaka, M. and Okuno, S., Nucl. Inst. and Meth., A 313, (1992) PP. 31.CrossRefGoogle Scholar
17. Sze, S.M., ibid, pp. 753.Google Scholar