Hostname: page-component-78c5997874-ndw9j Total loading time: 0 Render date: 2024-11-10T10:15:05.871Z Has data issue: false hasContentIssue false

Influence of Boron on the Precipitation Kinetics in Advanced Ultra-High Strength Steels

Published online by Cambridge University Press:  01 October 2015

G. Altamirano
Affiliation:
Instituto de Investigaciones Metalúrgicas, Universidad Michoacana de San Nicolás de Hidalgo. Edificio “U-5”, Ciudad Universitaria, Morelia, Michoacán, México.
I. Mejía
Affiliation:
Instituto de Investigaciones Metalúrgicas, Universidad Michoacana de San Nicolás de Hidalgo. Edificio “U-5”, Ciudad Universitaria, Morelia, Michoacán, México.
A. Hernández-Expósito
Affiliation:
Departament de Ciència dels Materials i Enginyeria Metal·lúrgica, ETSEIB – Universitat Politècnica de Catalunya. Av. Diagonal 647, Barcelona, Spain. Fundació CTM Centre Tecnològic, Av. de las Bases de Manresa, 1, Manresa, Spain.
J.M. Cabrera
Affiliation:
Departament de Ciència dels Materials i Enginyeria Metal·lúrgica, ETSEIB – Universitat Politècnica de Catalunya. Av. Diagonal 647, Barcelona, Spain. Fundació CTM Centre Tecnològic, Av. de las Bases de Manresa, 1, Manresa, Spain.
Get access

Abstract

In the present work, the stress relaxation method was employed to determine the influence of B addition on the kinetics of strain-induced precipitation and its interaction with the static austenite recrystallization. For this purpose, the behavior of two low carbon advanced ultra-high strength steels was analyzed during stress relaxation tests at different temperatures and constant pre-strain rate. The precipitation start (Ps) and finish (Pf) times were determined from the relaxation curves and then the corresponding precipitation-time-temperature diagrams were constructed for each steel. Transmission Electron Microscopy was used to determine the chemical nature and evolution of precipitation. In general, the results show that the addition of B retards the austenite recrystallization, tends to accelerate the precipitation kinetics of carbonitrides and leads to a finer and denser distribution of precipitates. These results are discussed in terms of the driving force for the nucleation of precipitation, which in turn is controlled by the degree of supersaturation of microalloying element and as a function of B segregation and B-vacancy complexes to dislocations and grain boundaries.

Type
Articles
Copyright
Copyright © Materials Research Society 2015 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Committee on Automotive Applications, International Iron & Steel Institute, Advanced High Strength Steel Application Guidelines, pp. 113 (2009).Google Scholar
Misra, R.D.K., Weatherly, G.C., Hartmann, J.E. and Boucek, A.J., Mater. Sci. Technol. 17, 11191129 (2001).CrossRefGoogle Scholar
Dutta, B., Palmiere, E.J. and Sellars, C.M., Acta Mater. 49, 785794 (2001).CrossRefGoogle Scholar
Palmiere, E.J., Garcia, C.I. and DeArdo, A.J., Metall. Mater. Trans. 25A, 277286 (1994).CrossRefGoogle Scholar
Dutta, B., Valdes, E. and Sellars, C.M., Acta Metall. Mater. 40, 653662 (1992).CrossRefGoogle Scholar
Simoneau, R., Begin, G. and Marquis, A.H., Metal. Sci. 12, 381386 (1978).CrossRefGoogle Scholar
Weiss, I. and Jonas, J.J., Metall. Trans. 10A, 831840 (1979).CrossRefGoogle Scholar
Akben, M.G., Weiss, I. and Jonas, J.J., Acta Metall. 29, 111121 (1981).CrossRefGoogle Scholar
Akben, M.G., Chandra, T., Plassiard, P. and Jonas, J.J., Acta Metall. 32, 591601 (1984).CrossRefGoogle Scholar
Dutta, B. and Sellars, C.M., Mater. Sci. Technol. 3, 197205 (1987).CrossRefGoogle Scholar
Liu, W.J. and Jonas, J.J., Metall. Trans. 19A, 14031413 (1988).CrossRefGoogle Scholar
Liu, W.J. and Jonas, J.J., Metall. Trans. 20A, 689697 (1989).CrossRefGoogle Scholar
Hansen, S.S., Vander Sande, J.B. and Cohen, M., Metall. Trans. 11A, 387402 (1980).CrossRefGoogle Scholar
Djahazi, M., He, X.L., Jonas, J.J. and Sun, W.P., Metall. Trans. 23A, 21112120 (1992).CrossRefGoogle Scholar
Medina, S.F., Mater. Sci. 32, 14871492 (1997).CrossRefGoogle Scholar
Pandit, A., Murugaiyan, A., Podder, A.S., Haldar, A., Bhattacharjee, D., Chandra, S. and Ray, R.K., Scripta Mater. 53, 13091314 (2005).CrossRefGoogle Scholar
Jonas, J.J. and Weiss, I., Met. Sci. 13, 238245 (1979).CrossRefGoogle Scholar
Lebon, A., Rofes-Vernis, J. and Rossard, C., Met. Sci. 9, 3640 (1975).CrossRefGoogle Scholar
Djahazi, M., He, X. and Jonas, J.J., Mater. Sci. Technol. 8, 628636 (1992).CrossRefGoogle Scholar
Jahazi, M. and Jonas, J.J., Mater. Sci. Eng. A 335, 4961 (2002).CrossRefGoogle Scholar
He, X.L., Djahazi, M., Jonas, J.J. and Jackman, J., Acta Metall. 39, 22952308 (1991).CrossRefGoogle Scholar
Wang, X.M. and He, X.L., ISIJ Int. 42, 3846 (2002).CrossRefGoogle Scholar
Shanmugam, S., Tanniru, M., Misra, R.D., Panda, D. and Jansto, S., Mater. Sci. Technol. 21, 165177 (2005).CrossRefGoogle Scholar
Shanmugam, S., Tanniru, M., Misra, R.D., Panda, D. and Jansto, S., Mater. Sci. Technol. 21, 883892 (2005).CrossRefGoogle Scholar
Reip, C.P., Shanmugam, S. and Misra, R.D., Mater. Sci. Eng. A 424, 307317 (2006).CrossRefGoogle Scholar