No CrossRef data available.
Published online by Cambridge University Press: 21 February 2011
Nuclear magnetic resonance pulse techniques are used in-situ during creep of single crystals of NaCl to evaluate the contribution of mobile dislocations to spin relaxation. 23Na spin-lattice relaxation rates were measured in the rotating frame (T1ρ) during compression creep of single crystals of NaCl along [110] direction at 473K at an applied stress of 20 MPa. The relaxation rates are evaluated from the spin-echo height following π/2, locking and 67° pulse sequence. The height of the free induction decay decreased as soon as the load is applied followed by a gradual increase until the steady-state is reached, at which point a saturation value is observed corresponding to the constant steady-state creep-rate. The mean jump distance of the mobile dislocations, evaluated from the ratio of the signal heights without deformation and during creep, decreased with time/strain reaching a constant value during steady-state creep regime. The results are compared with the dislocation-dislocation spacing, subgrain size as well as the jump distance predicted from creep models. The effects of dilvalent Ca and solid solution with LiCl are examined.