Hostname: page-component-745bb68f8f-b95js Total loading time: 0 Render date: 2025-01-15T06:04:56.617Z Has data issue: false hasContentIssue false

Integrated (Pb,La)(Zr,Ti)O3 Heterostructure Waveguide Devices Fabricated by Solid-Phase Epitaxy

Published online by Cambridge University Press:  10 February 2011

K. Nashimoto
Affiliation:
Corporate Research Laboratories, Fuji Xerox Co., Ltd., Kanagawa, JAPAN
S. Nakamura
Affiliation:
Corporate Research Laboratories, Fuji Xerox Co., Ltd., Kanagawa, JAPAN
H. Moriyama
Affiliation:
Corporate Research Laboratories, Fuji Xerox Co., Ltd., Kanagawa, JAPAN
K. Haga
Affiliation:
Corporate Research Laboratories, Fuji Xerox Co., Ltd., Kanagawa, JAPAN
M. Watanabe
Affiliation:
Corporate Research Laboratories, Fuji Xerox Co., Ltd., Kanagawa, JAPAN
T. Morikawa
Affiliation:
Corporate Research Laboratories, Fuji Xerox Co., Ltd., Kanagawa, JAPAN
E. Osakabe
Affiliation:
Corporate Research Laboratories, Fuji Xerox Co., Ltd., Kanagawa, JAPAN
T. Takeda
Affiliation:
Corporate Research Laboratories, Fuji Xerox Co., Ltd., Kanagawa, JAPAN
Get access

Abstract

Heterostructures of a Pb(Zr,Ti)O3 (PZT) waveguide/(Pb,La)(Zr,Ti)O3 (PLZT) system buffer layer were grown on a Nb-doped SrTiO3 (Nb:ST) substrate by solid-phase epitaxy. The propagation loss in the PLZT heterostructure waveguides was on the order of I dB/cm. An electro-optic beam deflection device with an ITO prism electrode on the surface of the PLZT heterostructure waveguide presented efficient deflection of the coupled laser beam by applying a voltage between the electrode and the substrate. A beam deflection greater than 10 mrad at 5 V and frequency response as fast as 13 MHz were observed. An apparent electro-optic coefficient as large as 39 pmJV was estimated from the deflection characteristics for the TE mode and TM mode suggesting the polarization independent nature of the PZT waveguide. For integrating the electrooptic PLZT heterostructure waveguides, channel waveguides were fabricated in the PZT waveguides using a simple wet-etching process. Based on a low-voltage drive structure, lowloss waveguide process, and fine patterning process, a fabricated digital matrix switch showed a – 10 dB cross-talk at a voltage as low as 7.5 V.

Type
Research Article
Copyright
Copyright © Materials Research Society 2000

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Haertling, G. H. and Land, C. E., J. Am. Ceram. Soc. 54, 1 (1971).Google Scholar
2. Nashimoto, K., Moriyama, H., and Osakabe, E., Jpn. J. Appl. Phys. 35, 4936(1996).Google Scholar
3. Nashimoto, K., Nakamura, S., Moriyama, H., Watanabe, M., and Osakabe, E., Appl. Phys. Lett. 73, 303(1998).Google Scholar
4. Nashimoto, K. and Nakamura, S., Jpn. J. Appl. Phys. 33, 5147(1994).Google Scholar
5. Nashimoto, K., Nakamura, S., Morikawa, T., Moriyama, H., Watanabe, M., and Osakabe, E., Appl. Phys. Lett. 74, 2761(1999).Google Scholar
6. Alferness, R. C., in Guided-Wave Optoelectronics, Tamir, T., Ed. 2nd ed. (Springer-Verlag, Berlin Heidelberg, 1990) pp. 145–2 10.Google Scholar
7. Baude, P. F., Ye, C., and Polla, D. L., Mat. Res. Soc. Symp. Proc. 310, 139(1993).Google Scholar
8. Nashimoto, K., Haga, K., Watanabe, M., Nakamura, S., and Osakabe, E., Appl. Phys. Lett. 75, 1054(1999).Google Scholar
9. Chen, Q., Chiu, Y., Lambeth, D. N., Schlesinger, T. E., and Stancil, D. D., J. Lightwave Technol., 12, 1401(1994).Google Scholar
10. Utsunomiya, T., Jpn. J. Appl. Phys. 28, 164(1989).Google Scholar
11. Bums, W. K., Lee, A. B., and Milton, A. F., Appl. Phys. Lett. 29, 790(1976).Google Scholar