Published online by Cambridge University Press: 26 February 2011
Dopants in ferroelectric materials affect the dielectric constant and the shape of the hysteresis loop. To understand and quantify these effects it is necessary to calculate the interaction between dopant and domain wall. In the following the dopant ion is modelled as an elastic dipole. The stresses surrounding a 180° domain wall are calculated in analogy to calculations in the magnetic case for Bloch walls. It is assumed that electrostrictive effects control the strains and that the spontaneous polarization does not rotate but decreases to zero at the center of the domain wall and increases in the opposite direction on the other side of the domain wall. The calculations are made assumingisotropic elastic constants. It is found that only elastic dipoles oriented in the planeof the domain wall interact with it. The interaction forces as a function of perpendicular distance between wall and dipole show an antisymmetric characteristic.