Hostname: page-component-745bb68f8f-mzp66 Total loading time: 0 Render date: 2025-01-15T06:42:22.684Z Has data issue: false hasContentIssue false

Interactions of Polysilicon with Aluminum

Published online by Cambridge University Press:  22 February 2011

G. Ottaviani
Affiliation:
Physics Department, via Campi 213/a Modena, 41100 Modena Italy
K. N. Tu
Affiliation:
IBM T.J. Watson Research Center, Yorktown Heights, N.Y. 10598
C. Nobili
Affiliation:
Physics Department, via Campi 213/a Modena, 41100 Modena Italy
Get access

Abstract

In-situ resistivity measurements togheter with Auger electron spectroscopy, MeV 4He+ backscattering spectrometry, scanning electron microscope and x-ray diffraction have been used to investigate interactions between Al films and CVD polycristalline silicon layers deposited on thermally grown SiO2 on silicon. A sharp and well defined increase in resistivity around 450 °C has been associated to the erosion of the polysilicon and growth of Si crystallites in the metal film. The kinetic of the transformation has been studied by isothermal treatment over the 390–450 °C temperature range. An activation energy of 2.2 ± 0.2 eV has been measured. Similar results have been obtained by using treatments at constant heating rate. A critical analysis of the available data suggests that the rate limiting step is the nucleation of Si grains in the aluminum film. The driving force for the process can be identified to be the free energy difference between the initial and final states.

Type
Research Article
Copyright
Copyright © Materials Research Society 1988

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Rosenberg, R., Sullivan, M.J. and Howard, J.K., in Thin Films – Interdiffusion and Reactions, edited by Poate, J.M., Tu, K.N. and Mayer, J. W. (Wiley, New York, 1978), chapter 2.Google Scholar
2. Murarka, S.P., Silicides for VLSI Applications, Academic Press, New York, 1983.Google Scholar
3. Ottaviani, G. and Mayer, J.W., in Reliability and Degradation – Semiconductor Devices and Circuits, edited by Howes, M.J. and Morgan, D.V. (Wiley, New York, 1981) p. 105.Google Scholar
4. Moffatt, W.G., The Handbook of Bynary Phase Diagrams, Genium Publishing Corp. New YorkM, 1986.Google Scholar
5. Ghate, P.P., Thin Solid Films 93, 359 (1982).Google Scholar
6. Learn, A.J., J. Electrochem. Soc. 123, 894 (1976).Google Scholar
7. McCaldin, J.O. and Sankur, H., Appl. Phys. Letters 19, 524 (1971).Google Scholar
8. van Gurp, G.J., J. Appl. Phys., 44, 2040 (1973).CrossRefGoogle Scholar
9. Paccagnella, A., Ottaviani, G., Fabbri, P., Ferla, G. and Queirolo, G., Thin Solid Films 128, 217 (1985).Google Scholar
10. Garg, N., Castleman, L.S. and D'Antonio, C., Thin Solid Films 112, 317 (1984).Google Scholar
11. Sankur, H., McCaldin, J.O. and Devaney, J., Appl. Phys. Letters 22, 64 (1973).Google Scholar
12. Chang, C.A., Siekhaus, W.J., Kaminska, T. and Huo, D.T., Appl. Phys. Letters 26, 178 (1975).Google Scholar
13. Nakamura, K., Nicolet, M.-A., Mayer, J.W., Blattner, R.J. and Evans, C.A. Jr. J. Appl. Phys. 46, 4678 (1975).CrossRefGoogle Scholar
14. Greene, J.E. and Mei, L., Thin Solid Films 34, 27 (1976).Google Scholar
15. Greene, J.E. and Mei, L., Thin Solid Films 37, 429 (1976).Google Scholar
16. Nakamura, K., Olowolafe, J.O., Lau, S.S., Nicolet, M.-A., Mayer, J.W. and Shima, R., J. Appl. Phys. 47, 1278 (1976).Google Scholar
17. Berthoud, L.A. Thin Solid Films 43, 319 (1977).Google Scholar
18. Harris, J.M., Blattner, R.J., Ward, I.D., Evans, C.A. Jr., Fraser, H.L., Nicolet, M.-A. and Ramiller, C.L. J. Appl. Phys. 48, 2897 (1977).Google Scholar
19. Nakamura, K. and Kamoshida, M. J. Appl. Phys. 48, 5349 (1977).Google Scholar
20. Scranton, R.A. and McCaldin, J.O., J. Vac. Sci. Technol. 15, 1358 (1978).Google Scholar
21. Magee, T.J. and Peng, J., J. Appl. Phys. 49, 4248 (1978).CrossRefGoogle Scholar
22. Learn, A.J. and Nowicki, R.S., Appl. Phys. Letters 35, 611 (1979).Google Scholar
23. Nowicki, R.S. and Learn, A.J., Thin Solid Films 67, 385 (1980).Google Scholar
24. Ottaviani, G., Sigurd, D., Marrello, V., Mayer, J.W. and McCaldin, J.O., J. Appl. Phys. 45, 1730 (1974).Google Scholar
25. Sigurd, D., Ottaviani, G., Arnal, H.J. and Mayer, J.W., J. Appl. Phys. 45, 1740 (1974).Google Scholar
26. Koster, U. and Weiss, P., J. Non-Crystalline Solids 17, 359 (1975).Google Scholar
27. Majni, G. and Ottaviani, G., Appl. Phys. Letters 31, 125 (1977).Google Scholar
28. Majni, G. and Ottaviani, G., J. Crystal Growth 45, 132 (1978).Google Scholar
29. MaJni, G., Ottaviani, O. and Stuck, R., Thin Solid Films 55, 235 (1978).Google Scholar
30. Ottaviani, G. and Majni, G., J. Appl. Phys. 50, 6865 (1979).CrossRefGoogle Scholar