Hostname: page-component-745bb68f8f-grxwn Total loading time: 0 Render date: 2025-01-15T06:55:09.628Z Has data issue: false hasContentIssue false

Interband Transitions in GaInNAs/GaAs Single Quantum Wells

Published online by Cambridge University Press:  11 February 2011

M. O. Manasreh
Affiliation:
Department of Electrical and Computer Engineering, University of New Mexico, Albuquerque, NM 87131
D. J. Friedman
Affiliation:
National Renewable Energy Laboratory, 1617 Cole Boulevards, Golden, CO 80401
W. Q. Ma
Affiliation:
Department of Physics, University of Arkansas, Fayetteville, AR 72701
C. L. Workman
Affiliation:
Department of Physics, University of Arkansas, Fayetteville, AR 72701
C. E. George
Affiliation:
Department of Physics, University of Arkansas, Fayetteville, AR 72701
G. J. Salamo
Affiliation:
Department of Physics, University of Arkansas, Fayetteville, AR 72701
Get access

Abstract

Photoluminescence (PL) spectra of interband transitions in GaInNAs/GaAs single quantum wells grown by metalorganic chemical vapor deposition technique on semi-insulating GaAs substrates were measured at 77 K for several samples grown with different In composition and dimethylhydrazine (DMH)/III ratios. The results show that the PL intensity increases as the In mole fraction is increased from 0 to 25%, but the PL intensity is degraded for samples with an In mole fraction of 30% or higher. The peak position energies of the PL spectra were investigated as a function of the DMH/III ratio. Thermal annealing effect induced a blue-shift in the PL spectra peak position energy in samples grown with high DMH/III ratio.

Type
Research Article
Copyright
Copyright © Materials Research Society 2003

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Kondow, M., Uomi, K., Niwa, A., Kitatani, T., Watahiki, S., and Yazawa, Y., Jpn. J. Appl. Phys. Part 1, 35, 1273 (1996).Google Scholar
2. Takeuchi, T., Chang, Y. –L., Tandon, A., Bour, D., Twist, R., Tan, M., and Luan, H. –C., Appl. Phys. Lett. 80, 2445 (2002).Google Scholar
3. Li, N. Y., Hains, C. P., Yang, K., Lu, J., Cheng, J., and Li, P. W., Appl. Phys. Lett. 75, 1051 (1999).Google Scholar
4. Li, W., Turpeinen, J., Melanen, P., Savolainen, P., Uusimaa, P., and Pessa, M., Appl. Phys. Lett. 78, 91 (2001).Google Scholar
5. Markus, A., Fiore, A., Ganiere, J. D., Oesterle, U., Chen, J. X., Deveaud, B., Ilegems, M., and Riechert, H., Appl. Phys. Lett. 80, 911 (2002).Google Scholar
6. Yang, X., Jurkovic, M. J., Heroux, J. B., and Wang, W. I., Appl. Phys. Lett. 75, 178 (1999).Google Scholar
7. Mars, D. E., Babic, D. I., Kaneko, Y., Chang, Y. –L., Subramanya, S., Kruger, J., Perlin, P., and Weber, E. R., J. Vac. Sci. Technol. B 17, 1272 (1999).Google Scholar
8. Sopanen, M., Xin, H. P., and Tu, C. W., Appl. Phys. Lett. 76, 994 (2000).Google Scholar
9. Xin, H. P., Kavanagh, K. L., Zhu, Z. Q., and Tu, C. W., J. Vac. Sci. Technol. B 17, 1649 (1999).Google Scholar
10. Xin, H. P., Kavanagh, K. L., Zhu, Z. Q., and Tu, C. W., Appl. Phys. Lett. 74, 2337 (1999).Google Scholar
11. Ng, T. K., Yoon, S. F., Wang, S. Z., Loke, W. K., and Fan, W. J., J. Vac. Sci. Technol. B 20, 964 (2002).Google Scholar
12. Spruytte, S. G., Coldren, C. W., Harris, J. S., Wampler, W., Krispin, P., Ploog, K., and Larson, M. C., J. Appl. Phys. 89, 4401 (2001).Google Scholar
13. Xin, H. P., Tu, C. W., and Geva, M., Appl. Phys. Lett. 75, 1416 (1999).Google Scholar
14. Pan, Z., Li, L. J., Zhang, W., Lin, Y. W., Wu, R. H., and Ge, W., Appl. Phys. Lett. 77, 1280 (2000).Google Scholar
15. see for example “Semiconductor Quantum Wells and Superlattices for Long-wavelength Infrared Detectors” edited by Manasreh, M. O. (Artech House, Norwood 1993), chapter one, p. 5.Google Scholar
16. Tournie, E., Pinault, M. –A., and Guzman, A., Appl. Phys. Lett. 80, 4148 (2002).Google Scholar