Hostname: page-component-cd9895bd7-p9bg8 Total loading time: 0 Render date: 2025-01-01T05:38:44.539Z Has data issue: false hasContentIssue false

Interdiffused SbN-based Quantum Well on GaAs for 1300-1550 nm Diode Lasers

Published online by Cambridge University Press:  01 February 2011

Ronald A. Arif
Affiliation:
raa4@lehigh.edu, Lehigh University, Department of Electrical and Computer Engineering, 7 Asa Drive, Sinclair Lab Rm 218, Bethlehem, Pennsylvania, 18015, United States, (610) 758-4326, (610) 758-2605
Nelson Tansu
Affiliation:
tansu@lehigh.edu, Lehigh University, Department of Electrical and Computer Engineering, United States
Get access

Abstract

A new method to realize InGaAsSbN quantum well (QW) structures on GaAs substrate is presented. This approach combines the established growth technique of InGaAsN and InGaAsSb QWs by metal organic chemical vapor deposition (MOCVD), with a post-growth thermal interdiffusion to achieve high quality interdiffused InGaAsSbN QW for diode lasers emitting at 1300-1550-nm. In addition to presenting the optimized interdiffused SbN-based QW design at 1550-nm, strain-compensated interdiffused InGaAsSb-GaAsN QW structure is also presented. Preliminary experimental findings of N- and Sb-diffusivities in GaAs matrix show good agreement with theory, indicating the feasibility of realizing interdiffused InGaAsSbN QW.

Type
Research Article
Copyright
Copyright © Materials Research Society 2006

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Tansu, N., Yeh, J. Y., and Mawst, L. J., IOP J. of Physics: Condensed Matter Physics, 16, S3277-S3318 (2004).Google Scholar
2. Takeuchi, T., Chang, Y.-L., Leary, M., Tandon, A., Luan, H.-C., Bour, D. P., Corzine, S. W., Twist, R., and Tan, M. R., IEEE LEOS 2001 Post-Deadline Session, San Diego, USA (2001).Google Scholar
3. Tansu, N., Kirsch, N. J., and Mawst, L. J., Appl. Phys. Lett, 81, 25232525 (2002).Google Scholar
4. Tansu, N., Yeh, J. Y., and Mawst, L. J., IEEE J. Sel. Top. Quant. Elect., 3, 12201227 (2003).Google Scholar
5. Wei, J., Xia, F., Li, C., and Forrest, S. R., IEEE Photon. Technol. Lett., 14, 597 (2002).Google Scholar
6. Choquette, K. D., Klem, J. F., Fischer, A. J., Blum, O., Allerman, A. A., Fritz, I. J., Kurtz, S. R., Breiland, W. G., Sieg, R., Geib, K. M., Scott, J. W., and Naone, R. L., Electron. Lett., 36, 13881390 (2000).Google Scholar
7. Ha, W., Gambin, V., Wistey, M., Bank, S., Kim, S., Harris, J. S. Jr, IEEE Photon. Technol. Lett., 14 (2002).Google Scholar
8. Shchekin, O. B. and Deppe, D. G., Appl. Phys. Lett., 80, 32773279 (2002).Google Scholar
9. Kovsh, A. R., Maleev, N. A., Zhukov, A. E., Mikhrin, S. S., Vasil'ev, A. R., Shemyakov, Yu.M., Livshits, D.A., Ustinov, V., Alferov, Zh.I., Ledentsov, N.N., Bimberg, D., et al. , Electron. Lett., 38, 11041106 (2002).Google Scholar
10. Dowd, P., Braun, W., Smith, D. J., Ryu, C. M., Guo, C.-Z., Chen, S. L., Koelle, U., Johnson, S. R., and Zhang, Y.-H., Appl. Phys. Lett., 75, 12671269 (1999).Google Scholar
11. Tansu, N., and Mawst, L. J., IEEE J. Quantum Electron., 39, 12051210 (2003).Google Scholar
12. Bank, S. R., Wistey, M. A., Goddard, L. L., Yuen, H. B., Lordi, V., and Harris, J. S. Jr, IEEE. J. Quantum Electron., 40, 656664 (2004).Google Scholar
13. Ha, W., Gambin, V., Bank, S., Wistey, M., Yuen, H., Kim, S., and Harris, J.S. Jr, IEEE. J. Quantum Electron., 38, 12601267 (2002).Google Scholar
14. Bank, S.R., Wistey, M.A., Goddard, L.L., Yuen, H.B., Bae, H.P., Harris, J.S., Electron. Lett., 40, 11861187 (2004).Google Scholar
15. Arif, R. A., and Tansu, N., Proc. of SPIE Photonics West 2005, Physics and Simulation of Optoelectronics Devices XIII, San Jose, CA, Jan 2005.Google Scholar
16. Cederberg, J.G., Hafich, M.J., Biefield, R.M., Palmisiano, M., J. Cryst. Growth, 248, 289295 (2003).Google Scholar
17. Kuo, H. C., Yao, H. H., Chang, Y. S., Tsai, M. Y., Wang, S. C., Laih, L. H., J. Cryst. Growth, 272, 538542 (2004).Google Scholar
18. Chaldyshev, V.V., Bert, N.A., Musikhin, G., Suvorova, A.A., Preobrazhenskii, V.V., Putyato, M.A., Semyagin, B.R., Werner, P., and Gosele, U., Appl. Phys. Lett., 79, 12941296 (2001).Google Scholar
19. Bosker, G., and Stolwijk, N.A., Phys. Rev. Lett., 81, 16, 34433446 (1998).Google Scholar
20. Oye, Michael M., Govindaraju, Sridhar, Sidhu, Rubin, Reifsnider, Jason M., Holmes, Archie L. Jr, Appl. Phys. Lett, 86, 151903–1–3 (2005).Google Scholar
21. Manasreh, M.O., Li, H., Singapore, OPA (2000).Google Scholar
22. Chan, M.C.Y., Surya, C., and Wai, P.K.A., J. of Appl. Phys, 90, 197201 (2001).Google Scholar
23. Shim, K., Rabitz, H., Dutta, P., J. of Appl. Phys, 88, 71577161 (2000).Google Scholar
24. Chow, W. W., Jones, E. D., Modine, N. A., Allerman, A. A., and Kurtz, S. R., Appl. Phys. Lett., 75, 28912893 (1999).Google Scholar