Hostname: page-component-745bb68f8f-hvd4g Total loading time: 0 Render date: 2025-01-15T07:03:46.180Z Has data issue: false hasContentIssue false

Interfacial Electron Transfer in MoS2 Nanoclusters

Published online by Cambridge University Press:  10 February 2011

F. Parsapour
Affiliation:
Department of Chemistry, Colorado State University, Fort Collins, CO 80523-1872
D.F. Kelley*
Affiliation:
Department of Chemistry, Colorado State University, Fort Collins, CO 80523-1872
*
*Author to whom correspondence should be addressed
Get access

Abstract

The dynamics of photoinduced electron transfer between 3.0 nm diameter MoS2 nanoclusters and adsorbed electron acceptors have been studied using static and time resolved optical spectroscopy. Two types of electron acceptors are adsorbed on these nanoclusters: 2,2'-bipyridine and 4,4',5,5'-tetramethyl-2,2'-bipyridine. The results reported here focus on the interpretation of the strongly non-exponential electron transfer kinetics. Electron/hole recombination kinetics have previously been analyzed in terms of a simple distributed kinetics model, and this model is extended to include the case of interfacial electron transfer.

Type
Research Article
Copyright
Copyright © Materials Research Society 2000

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. For a recent and comprehensive review see: Semiconductor Nanoclusters - Physical, Chemical and Catalytic Aspects, Kamat, P. V. and Meisel, D. (Eds.) Elsevier (1997).Google Scholar
2. Brus, L. E., J Chem. Phys. 79, 5566 (1983); L. E. Brus, J Chem. Phys. 80, 4403 (1984); J Phys. Chem. 90, 2555 (1986).10.1063/1.445676Google Scholar
3. Rosetti, R., Ellison, J. E., Gibson, J. M., and Brus, L. E., J Chem. Phys. 80, 4464 (1984).10.1063/1.447228Google Scholar
4. Krishna, M. V. Rama and Friesner, R. A., J Chem. Phys. 95, 8309 (1991).10.1063/1.461258Google Scholar
5. Lippens, P. E. and Lannoo, M., Phys. Rev. B 39, 10935 (1989).10.1103/PhysRevB.39.10935Google Scholar
6. Kayanuma, Y., Phys. Rev. B 38, 9797 (1988); Y. Kayanuma, Phys. Rev. B 44,13085 (1991).10.1103/PhysRevB.38.9797Google Scholar
7. Rossetti, R., Beck, S. M. and Brus, L. E., J Am. Chem. Soc. 106, 980 (1984).10.1021/ja00316a027Google Scholar
8. a) Wilcoxon, J. P., Williamson, R. L., and Baughman, R., J Chem. Phys. 98, 9933 (1993); b) J. P. Wilcoxon, R. J. Baughman, and R. L. Williamson In Novel Methods for Catalyst Preparation, Symposium S, Proceedings of the Fall Meeting of the Materials Research Society, Boston, MA, November, 1990.10.1063/1.464320Google Scholar
9. Wilcoxon, J. P. and Samara, G. A., Phys. Rev. B 51, 7299 (1995).10.1103/PhysRevB.51.7299Google Scholar
10. Parsapour, F., Kelley, D. F., Craft, S. and Wilcoxon, J. P., J Chem. Phys. 104, 4978 (1996).10.1063/1.471128Google Scholar
11. Doolen, R., Latinen, R., Parsapour, F. and Kelley, D. F., J Phys. Chem. B 102, 3906 (1998).10.1021/jp9805252Google Scholar
12. Gerischer, H. in Topics in Applied Physics, vol 31: Solar Energy Conversion, Ed. Seraphin, B. O., Springer, Berlin, 1979.10.1007/3-540-09224-2_4Google Scholar
13. Wilcoxon, J. P. - to be publishedGoogle Scholar
14. Nimlos, M. R., Young, M. A., Bernstein, E. R., and Kelley, D. F., J Chem. Phys. 91, 5268 (1989).10.1063/1.457572Google Scholar
15. a) Coehoom, R., Haas, C., Dijkstra, J., Flipse, C. J. F., deGroot, R. A., and Wold, A., Phys. Rev. B 35, 6195, 6203 (1987); b) B. L. Evans and P. A. Young, Proc. Roy. Soc. A 284, 402 (1965).Google Scholar
16. Thomas, D. G., Hopfield, J. J., Augustyniak, W. M., Phys. Rev. A 140, 202 (1965).10.1103/PhysRev.140.A202Google Scholar