Hostname: page-component-cd9895bd7-jn8rn Total loading time: 0 Render date: 2025-01-05T03:11:33.146Z Has data issue: false hasContentIssue false

Ion Assisted ETP-CVD a-Si:H at Well Defined Ion Energies

Published online by Cambridge University Press:  31 January 2011

Michael A. Wank
Affiliation:
m.a.wank@dimes.tudelft.nl, Delft University of Technology, Electrical Energy Conversion Unit/DIMES, Delft, Netherlands
René van Swaaij
Affiliation:
R.A.C.M.M.vanSwaaij@tudelft.nl, Delft University of Technology, Electrical Energy Conversion Unit/DIMES, Delft, Netherlands
M. van de Sanden
Affiliation:
m.c.m.v.d.sanden@tue.nl, Eindhoven University of Technology, Department of Applied Physics, Eindhoven, Netherlands
Get access

Abstract

Hydrogenated amorphous silicon (a-Si:H) was deposited with the Expanding Thermal Plasma-CVD (ETP CVD) method utilizing pulse-shaped substrate biasing to induce controlled ion bombardment during film growth. The films are analyzed with in-situ real time spectroscopic ellispometry, FTIR spectroscopy, as well as reflection-transmission and Fourier transform photocurrent spectroscopy (FTPS) measurements. The aim of this work is to investigate the effect ion bombardment with well defined energy on the roughness evolution of the film and the material properties.

We observe two separate energy regimes with material densification and relatively constant defect density below ˜ 120-130 eV and a constant material density at increasing defect density > 120-130 eV substrate bias. We discuss our results in terms of possible ion – surface atom interactions and relate our observations to reports in literature.

Type
Research Article
Copyright
Copyright © Materials Research Society 2009

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

[1] Sanden, M. C. M. van de, Severens, R. J. Kessels, W. M. M. Meulenbroeks, R. F. G. and Schram, D. C. J. Appl. Phys. 84 (1998), p. 2426.Google Scholar
[2] Smets, A. H. M. Kessels, W. M. M. and Sanden, M. C. M. van de, J. Appl. Phys. 102 (2007), p. 073523.Google Scholar
[3] Wang, S. B. and Wendt, A. E. J. Appl. Phys. 88 (2000), p. 643.Google Scholar
[4] Oever, P. J. van den, Sanden, M. C. M. van de and Kessels, W. M. M. J. Appl. Phys. 101 (2007), p. 10.Google Scholar
[5] Ma, Z. Q. Zheng, Y. F. and Liu, B. X. Phys. Status Solidi A-Appl. Res. 169 (1998), p. 239.Google Scholar
[6] Wittmaack, K. Phys. Rev. B 68 (2003), p. 11.Google Scholar
[7] Kaufman, H. R. and Harper, J. M. E. J. Vac. Sci. Technol. A 22 (2004), p. 221.Google Scholar
[8] Hamers, E. A. G. Sark, W. G. J. H. M. van, Bezemer, J. Meiling, H. and Weg, W. F. van der, J. Non-Cryst. Solids 226 (1998), p. 205.Google Scholar
[9] Harper, J. M. E. Cuomo, J. J. Gambino, R. J. and Kaufman, H. R. Ion Bombardment Modification of Surfaces: Fundamentals and Applications, Elsevier Science, Amsterdam (1984).Google Scholar