Hostname: page-component-745bb68f8f-d8cs5 Total loading time: 0 Render date: 2025-01-15T07:01:17.099Z Has data issue: false hasContentIssue false

Itinerant Vibrons and High-Temperature Superconductivity*

Published online by Cambridge University Press:  18 March 2011

John B. Goodenough*
Affiliation:
Texas Materials Institute, ETC 9.102University of Texas at Austin, Austin, TX 78712-1063
Get access

Abstract

The La2−xSrxCuO4 phase diagram is interpreted within the framework of a transition from localized to itinerant electronic behavior. In the underdoped region 0 < x < 0.1, holes in the x2 – y2 band are not small polarons; each occupies a mobile correlation bag of 5 to 6 copper centers at temperatures T > TF, a spinodal phase segregation into the parent antiferromagnetic phase and a polaron liquid is accomplished below TF by cooperative oxygen displacements. In the overdoped compositions > x > 0.25, holes are excluded from strong-correlation fluctuations within a Fermi liquid. In the intermediate range 0.1 < x < 0.25, the polaron liquid formed below room temperature changes character with increasing x and decreasing T. In the polaron liquid, mobile two-hole bags of four copper centers order with decreasing temperature into alternate CuO-Cu rows of a superconductive CuO2 sheet at a critical composition xc ≍ 1/6. It is argued that hybridization of itinerant electrons with optical-mode phonons propagating along the Cu-O-Cu rows produces heavy electrons responsible for high-temperature superconductivity.

Type
Research Article
Copyright
Copyright © Materials Research Society 2001

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Goodenough, J. B., Kafalas, J. A., and Longo, J. M., Preparative Methods in Solid State Chemistry, Hagenmuller, P., ed. (Academic Press, New York, N.Y. 1972), Chap. 1.Google Scholar
2. Goodenough, J. B., Ferroelectrics 130, 77 (1992).Google Scholar
3. Bozin, E. S., Kwei, G. H., Tagaki, H., and Billinge, S., Phys. Rev. Lett. 84, 5856 (2000).Google Scholar
4. Goodenough, J. B. and Zhou, J.-S., Phys. Rev. B 42, 4276 (1990).Google Scholar
5. Zhang, F. C. and Rice, T. M., Phys. Rev. B 37, 3759 (1988).Google Scholar
6. Goodenough, J. B., Zhou, J.-S., and Chan, J., Phys. Rev. B 47, 5275 (1993).Google Scholar
7. Bersuker, G. I. and Goodenough, J. B., Physica C 274, 267 (1992).Google Scholar
8. Egami, T., Petrov, Y., and Louca, D., J. Supercond. (in press).Google Scholar
9. Tranquarda, J. M., Ichikawa, N., and Uchida, N., Phys Rev. B 59, 14712 (1999).Google Scholar
10. Goodenough, J. B., J. Supercond (in press).Google Scholar
11. Inoue, I. H., Hase, I., Aiura, Y., Fujimori, A., Haruyama, Y., Maruyama, T., and Nishihara, Y., Phys. Rev. Lett. 74, 2539 (1995).Google Scholar
12. Zhou, J.-S. and Goodenough, J. B., Phys. Rev. B 54, 13393 (1996).Google Scholar
13. Zhou, J.-S., Archibald, W., and Goodenough, J. B., Phys. Rev. B 57, R2017 (1998).Google Scholar
14. Zhou, J.-S., Goodenough, J. B., Dabrowski, B., Klamut, P. W., and Bukowski, Z., Phys. Rev. B 61, 4401 (2000).Google Scholar
15. Wen, H. H., Chen, X. Y., Yang, W. L., and Zhao, Z. X., Phys. Rev. Lett. 85, 2805 (2000).Google Scholar
16. Kawamata, T., Adachi, T., Noji, T., and Koike, Y., Phys. Rev. B 62, R11981 (2000); I. Watanabe, M. Aoyama, M. Akoshima, T. Kawamata, T. Adachi, Y. Koike, S. Ohira, W. Higemoto, and K. Nagamine, ibid, R11985.Google Scholar
17. Zhou, J.-S. and Goodenough, J. B., Phys. Rev. B 51, 3104 (1995).Google Scholar
18. Shen, Zhi-xun, Physica B 197, 632 (1994).Google Scholar
19. Dessau, D. S., Shen, Z.-X., King, D. M., Marshall, D. S., Lombardo, L. W., Dickinson, P. H., Loeser, A. G., DiCarlo, J., Park, C.-H., Kapitulmik, A., and Spicer, W. E., Phys. Rev. Lett. 71, 2781 (1993).Google Scholar
20. Norman, M. R., Ding, H., Randeria, M., Campuzano, J. C., Yokoya, T., Takeuchi, T., Takahasi, T., Mochiku, T., Kadowski, K., Gutasarma, P., and Hinks, D. G., Nature 392, 157 (1998); P. Coleman, ibid, 134.Google Scholar
21. Cohn, J. L., Wolf, S. A., and Vanderah, T., Phys. Rev. B 45, 511, (1992).Google Scholar
22. Krishana, K., Ong, N. P., Li, O., Gu, G. D., and Koshizuka, N., Science 277, 83 (1997).Google Scholar
23. Deutscher, G., Dagan, Y., and Kupke, R., J. Supercond. (in press).Google Scholar
24. Little, W., J. Supercond. (in press).Google Scholar
25. Zhou, J.-S., Chen, H., and Goodenough, J. B., Phys. Rev B 49, 9084 (1994).Google Scholar
26. Crawford, M. K., Farneth, W. E., McCarron, E. M. III, Harlow, R. L., and Moudden, A. H., Science 250, 1390 (1990).Google Scholar
27. Temprano, D. Rubio, Mesot, J., Janssen, S., Conder, K., Furrer, A., Mutka, H., and Müller, K. A. Phys. Rev. Lett. 84, 1990 (2000).Google Scholar
28. Zhou, J.-S. (unpublished).Google Scholar