Hostname: page-component-cd9895bd7-lnqnp Total loading time: 0 Render date: 2025-01-01T01:07:29.289Z Has data issue: false hasContentIssue false

Large Magnetic Anisotropy in Co3Pt Ordered Phase Thin Films

Published online by Cambridge University Press:  10 February 2011

Yoshiyasu Yamada
Affiliation:
Information Storage Materials Laboratory, Toyota Technological Institute, 2-12-1, Hisakata, Tempaku, Nagoya, Japan
Takao Suzuki
Affiliation:
Information Storage Materials Laboratory, Toyota Technological Institute, 2-12-1, Hisakata, Tempaku, Nagoya, Japan
Get access

Abstract

The very large perpendicular magnetic anisotropy of the order of 2 x 107 erg/cm3 at room temperature was found in CoJ-x Ptx(0<x<0.5) alloy thin films made by e-beam evaporation. The large magnetic anisotropy is likely related to the anisotropic Co-Co bonding distribution, which is similar to the cases of Co/Pt multilayers and FePt alloy thin films. The activation energy estimated for the ordering is approximately 0.3 eV, which is preferably compared to 0.2 eV for FePt. A model is proposed, for which both a short range and long range ordering are present, depending on substrate deposition temperature.

Type
Research Article
Copyright
Copyright © Materials Research Society 1998

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Visokay, M. R. and Sinclair, R., Appl. Phys. Lett. 66, 1692(1995).Google Scholar
2. Lairson, B. M., Visokay, M. R., Marinero, E. E., Sinclair, R., and Clemens, B. M., J. Appl. Phys. 74, 1922(1993).Google Scholar
3. Lairson, B. M. and Clemens, B. M., Appl. Phys. Lett. 63, 1438(1993).Google Scholar
4. Cebollada, A., Weller, D., Sticht, J., Harp, G. R., Farrow, R. F. C., Marks, R. F., Savoy, R., and Scott, J. C., Phys. Rev. B, 50, 3419(1994).Google Scholar
5. Lin, C. J. and Gorman, G. L., Appl. Phys. Lett. 61, 1600(1992).Google Scholar
6. Park, S. E., Jung, P. Y., and Kim, K. B., J. Appl. Phys. 77, 2641(1995).Google Scholar
7. Tyson, T. A., Conradson, S. D., Farrow, R. F. C., and Jones, B. A., Phys. Rev. B, 54, R3702(1996).Google Scholar
8. Harp, G. R., Weller, D., Rabedeau, T. A., Farrow, R. F. C., and Toney, M. F., Phys. Rev. Lett. 71, 2493(1993).Google Scholar
9. Yamada, Y., Suzuki, T., and Abarra, E. N., IEEE Trans. Magn. 33, 3622(1997).Google Scholar
10. Cullity, B. D., Elements of X-ray Diffraction, 2nd ed. (Addison-Wesley, Massachusetts, 1978), P. 383.Google Scholar
11. Nowick, A. S. and Weisberg, L. R., Acta. Metall. 6, 260(1958).Google Scholar
12. Farrow, R. F C., Weller, D., Marks, R. F., Toney, M. F., Hom, S., Harp, G. R., and Cebollada, A., Appl. Phys. Lett. 69, 116(1996).Google Scholar
13. Pierron-Bohnes, Vronique, presented at the Spring Mtg. MRS (San Francisco, U. S. A., 1998).Google Scholar
14. Cheng, S-C. N., Kryder, M. H., and Mathur, M. C. A., IEEE Trans. Magn. 25, 4018(1989).Google Scholar
15. Yan, X., Hirsher, M., Egami, T., and Marinero, E. E., Phys. Rev. B43, 9300(1991).Google Scholar
16. Gambino, R. J. and Cuomo, J. J., J. Vac. Sci. Technol. 15, 296(1978).Google Scholar
17. Mizoguchi, T. and Cargill, G. S. III, J. Appl. Phys. 50, 3570(1979).Google Scholar
18. Fu, H., Mansuripur, M., and Meystre, P., Phys. Rev. Lett. 66, 1086(1991).Google Scholar
19. Hellman, F. and Gyorgy, E. M., Phys. Rev. Lett. 68, 1391(1992).Google Scholar
20. Harris, V. G., Aylesworth, K. D., Das, B. N., Elan, W. T., and Koon, N. C., Phys. Rev. Lett. 69, 1939(1992).Google Scholar
21. MacLaren, J. M. and Victora, R. H., Appl. Phys. Lett. 66, 3377(1995).Google Scholar