Hostname: page-component-cd9895bd7-jkksz Total loading time: 0 Render date: 2024-12-28T18:59:18.119Z Has data issue: false hasContentIssue false

Laser-Induced Microstructural Modification of Polycrystalline Cu and Ag Films Encapsulated in SiO2

Published online by Cambridge University Press:  01 February 2011

Rong Zhong
Affiliation:
roz3@pitt.edu, University of Pittsburgh, Mechanical Engineering and Materials Science, Pittsburgh PA 15261, United States
Jorg M.K. Wiezorek
Affiliation:
wiezorek@pitt.edu, University of Pittsburgh, Mechanical Engineering and Materials Science, Pittsburgh, PA, 15261, United States
John P. Leonard
Affiliation:
jleonard@engr.pitt.edu, University of Pittsburgh, Mechanical Engineering and Materials Science, Pittsburgh, PA, 15261, United States
Get access

Abstract

Excimer-laser-induced rapid lateral solidification was used to produce large grain microstructures in copper and silver thin films. These were multilayer thin film structures consisting of sputter deposited copper and silver thin films encapsulated by silica (SiO2/metal/SiO2/Si substrate). In this process, a single excimer laser pulse and projection imaging optics were used to melt a 60 micron wide line in the metal film. The resolidification of the melted lines is found to occur laterally in the plane of the film, resulting in grains greater than 20 um in length and 1 um wide. Electron diffraction analysis allowed identification of a strong <001> texture in the growth direction along the major axis of the elongated grains as well as similar texture parallel to the film surface. Various dislocation and faulted defect structures are identified and examined in the context of the rapid solidification and potential application to interconnects.

Type
Research Article
Copyright
Copyright © Materials Research Society 2007

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1International Technology Roadmap for Semiconductors - Interconnects, (2005)Google Scholar
2 Kapur, P., McVittie, J. P. and Saraswat, K. C., IEEE Trans. Electron Dev. 49, 590 (2002).Google Scholar
3 Kapur, P., Chandra, G., McVittie, J. P. and Saraswat, K. C., IEEE Trans. Electron Dev. 49, 598 (2002).Google Scholar
4 Murarka, S. P., Verner, I. V., Gutmann, R. J., Copper-- Fundamental Mechanisms for Microelectronic Applications, Wiley & Sons, (2000).Google Scholar
5 Wetzig, K., Schneider, C. M., Metal Based Thin Films for Electronics, Wiley VCH, (2003).Google Scholar
6 Murarka, S. P., Mater. Sci. Technol. 17, 749 (2001).Google Scholar
7 Gogl, J., J. Vancea and Hoffmann, H., J. Phys. Cond. Matt. 2, 1795 (1990).Google Scholar
8 Mannan, K. M. and Karim, K. R., J. Phys. F 5, 1687 (1975).Google Scholar
9 Tsuei, C. C., Ultrarapid Quenching of Liquid Alloys, Ch. 9, pp. 395430 (1981).Google Scholar
10 Lass, J. S., Phys. Rev. B 22, 5744 (1980).Google Scholar
11 Zurcher, R., Muller, M., Sachslehner, F., Groger, V. and Zehetbauer, M., J. Phys. Cond. Matt. 7, 3515 (1995).Google Scholar
12 Hau-Riege, C. S., Microelectronics Reliability 44, 195 (2004).Google Scholar
13 Hu, C. K., Gignac, L. M., Liniger, E., Detavernier, C., Malhotra, S. G. and Simon, A., J. Appl. Phys. 98, 124501 (2005).Google Scholar
14 Robins, J. L. and McIsaac, K., Thin Solid Films 163, 285 (1988).Google Scholar
15 Ji, C., Oskam, G. and Searson, P. C., Surf. Sci. 492, 115 (2001).Google Scholar
16 Knorr, D. B., Tracy, D. P. and Rodbell, K. P., Appl. Phys. Lett. 59, 3241 (1991).Google Scholar
17 Thompson, C. V., Annu. Rev. Mater. Sci. 30, 159 (2000).Google Scholar
18 Nogues, C. and Wanunu, M., Surf. Sci. 573, L383 (2004).Google Scholar
19 Grieser, J., Muller, D., Mullner, P., Thompson, C. V. and Arzt, E., Scripta Mater. 41, 709 (1999).Google Scholar
20 Ishiwara, H., Yamamoto, H. and Furukawa, S., Appl. Phys. Lett. 43, 1028 (1983).Google Scholar
21 Mayer, N. M., Hoffmann, H. and Schafer, A., Thin Solid Films 91, 241 (1982).Google Scholar
22 Lingk, C. and Gross, M. E., J. Appl. Phys. 84, 5547 (1998).Google Scholar
23 Pauli, M., Dahn, G., J. Muller and Doscher, M., Appl. Surf. Sci. 69, 398 (1993).Google Scholar
24 Spinella, C., Lombardo, S. and Campisano, S. U., “Grain growth and size distribution in ionirradiated chemical vapor deposited amorphous silicon”, Appl. Phys. Lett. 55, 109 (1989).Google Scholar
25J.Harper, M. E., Colgan, E. G., Hu, C. K., Hummel, J. P., Buchwalter, L. P. and Uzoh, C. E., Mater. Res. Bull. 19, 23 (1994).Google Scholar
26 Park, K. C. and Kim, K. B., J. Electrochem. Soc. 142, 3109 (1995).Google Scholar
27 Jiang, Q. T., Nowell, M., Foran, B., Frank, A., Havemann, R. H., Parihar, V., Augur, R. A. and Luttmer, J. D., J. Electron. Mater. 31, 10 (2002).Google Scholar
28 Hau, S. P.-Riege and Thompson, C. V., Appl. Phys. Lett. 76, 309 (2000).Google Scholar
29 Zielinski, E. M., Vinci, R. P., and Bravman, J. C., Appl. Phys. Lett. 67, 1078 (1995).Google Scholar
30 Hau-Riege, C. S. and Thompson, C. V., Appl. Phys. Lett. 75, 1464 (1999).Google Scholar
31 Hau-Riege, C. S. and Thompson, C. V., Appl. Phys. Lett. 77, 352 (2000).Google Scholar
32 Kline, J. E. and Leonard, J. P., Thin Solid Films 488, 306 (2005).Google Scholar
33 Kline, J. E. and Leonard, J. P., Appl. Phys. Lett. 86, 201902 (2005).Google Scholar
34 Zhong, R., Wiezorek, J. M. K. and Leonard, J. P., IMID/IDMC Digest No. 49–1, 1739 (2006).Google Scholar
35 Finch, R. H., Queisser, H. J., Thomas, G. and Washburn, J., J. Appl. Phys. 34, 406 (1963).Google Scholar
36 Zhong, R., Wiezorek, J. M. K. and Leonard, J. P., to be published.Google Scholar