Hostname: page-component-745bb68f8f-g4j75 Total loading time: 0 Render date: 2025-01-15T07:06:34.806Z Has data issue: false hasContentIssue false

Lateral Ordering of Self-Assembled Ge Islands

Published online by Cambridge University Press:  10 February 2011

Jian-Hong Zhu
Affiliation:
Walter Schottky Institut, Technische Universität München, Am Coulombwall, D-85748 Garching, Germany
K. Brunner
Affiliation:
Walter Schottky Institut, Technische Universität München, Am Coulombwall, D-85748 Garching, Germany
G. Abstreiter
Affiliation:
Walter Schottky Institut, Technische Universität München, Am Coulombwall, D-85748 Garching, Germany
Get access

Abstract

Two-dimensionally ordered arrays of Ge islands are realized by molecular beam epitaxy on vicinal Si(001) surfaces with regular ripples. Deposition of a 2.5 nm Si0.55Ge0.45/10 nm Si multilayer on vicinal Si(001) surfaces gives rise to the formation of regular ripples with a typical period of 100 nm, due to step-bunching. The ripples lead to the long-range line-up of the Ge islands along their direction, while the strong repulsive interaction between the dense Ge islands determines their relative arrangement on different step bunches of a ripple. The ordering pattern can be controlled by the Ge coverage as well as the direction of the ripples. The Ge islands show a narrow size distribution with the lateral size limited by the ripple period

In contrast, when deposited directly on well-prepared biatomic-stepped vicinal Si(001) surfaces under the same growth conditions, only weak ordering of Ge islands along the step direction is achieved. No ordering of Ge islands has been observed, when a flat Si(001) surface is employed, where no obvious step-bunching occurs.

The results promise efficient control on the position and size of self-assembled and selfordered Ge islands by the steps prepared on vicinal surfaces.

Type
Research Article
Copyright
Copyright © Materials Research Society 1998

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Teichert, C., Lagally, M. G., Peticolas, L. J., Bean, J. C., and Tersoff, J., Phys. Rev. B 53, 16334 (1996).Google Scholar
2. Darhuber, A. A., Schittenhelm, P., Holy, V., Stangl, J., Bauer, G., Abstreiter, G., Phys. Rev. B 55, 15652 (1997).Google Scholar
3. Shiryaev, S. Yu., Jensen, F., Hansen, J. Lundsgaard, Petersen, J. Wulff, and Larsen, A. Nylandsted, Phys. Rev. Lett. 78, 503 (1997).Google Scholar
4. Kamins, T. I., and Williams, R. Stanley, Appl. Phys. Lett. 71, 1201 (1997).Google Scholar
5. Tersoff, J., Phang, Y. H., Zhang, Z., and Lagally, M. G., Phys. Rev. Lett. 75, 2730 (1995).Google Scholar
6. Teichert, C., Phang, Y. H., Peticolas, L. J., Bean, J. C., and Lagally, M. G., in Surface Diffusion: Atomistic and Collective Process, NATO-ASI Series, edited by Tringides, M. C. (Plenum, New York, 1997), p. 297.Google Scholar
7. Lutz, M. A., Feenstra, R. M., Mooney, P. M., Tersoff, J., and Chu, J. O., Surf. Sci. 316, L1075 (1994).Google Scholar
8. Zhu, J., Brunner, K., and Abstreiter, G., Appl. Phys. Lett. 72, 424 (1998).Google Scholar
9. Mo, Y.-W., Savage, D. E., Swartzentruber, B. S., and Lagally, M. G., Phys. Rev. Lett. 65, 1020 (1990).Google Scholar
10. Shchukin, V. A., Ledentsov, N. N., Kop'ev, P. S. and Bimberg, D., Phys. Rev. Lett. 75, 2968 (1995).Google Scholar
11. Grundmann, M., Christen, J., Ledentsov, N. N., Böhrer, J., Bimberg, D., Ruvimov, S. S., Werner, P., Richter, U., Gösele, U., Heydenreich, J., Ustinov, V. M., Egorov, A. Yu., Zhukov, A. E., Kop'ev, P. S., and Alferov, Zh. I., Phys. Rev. Lett. 74, 4043 (1995).Google Scholar