Hostname: page-component-745bb68f8f-g4j75 Total loading time: 0 Render date: 2025-01-15T06:49:35.416Z Has data issue: false hasContentIssue false

Limitations to the use of Sb as a Surfactant During SiGe MBE

Published online by Cambridge University Press:  10 February 2011

Glenn G. Jernigan
Affiliation:
Naval Research Laboratory, Electronics Science and Technology Division, 4555 Overlook Ave. SW, Washington DC 20375
Conrad L. Silvestre
Affiliation:
Naval Research Laboratory, Electronics Science and Technology Division, 4555 Overlook Ave. SW, Washington DC 20375
Mohammad Fatemi
Affiliation:
Naval Research Laboratory, Electronics Science and Technology Division, 4555 Overlook Ave. SW, Washington DC 20375
Mark E. Twigg
Affiliation:
Naval Research Laboratory, Electronics Science and Technology Division, 4555 Overlook Ave. SW, Washington DC 20375
Phillip E. Thompson
Affiliation:
Naval Research Laboratory, Electronics Science and Technology Division, 4555 Overlook Ave. SW, Washington DC 20375
Get access

Abstract

The use of Sb as a surfactant in suppressing Ge segregation during SiGe alloy growth was investigated as a function of Sb surface coverage, Ge alloy concentration, and alloy thickness using xray photoelectron spectroscopy, x-ray diffraction, and transmission electron microscopy. Unlike previous studies where Sb was found to completely quench Ge segregation into a Si capping layer, we find that Sb can not completely prevent Ge segregation while Si and Ge are being co-deposited. This results in the production of a non-square quantum well with missing Ge at the beginning and extra Ge at the end of the alloy. We also found that Sb does not relieve strain in thin films but does result in compositional or strain variations within thick alloy layers.

Type
Research Article
Copyright
Copyright © Materials Research Society 1998

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Fujita, K., Fukatsu, S., Yaguchi, H., Igarashi, T., Shiraki, Y., and Ito, R., Jpn. J. Appl. Phys. 29, L1981 (1990).Google Scholar
2. Copel, M. and Tromp, R. M., Appl. Phys. Lett. 58, 2648 (1991).Google Scholar
3. Lin, X. W., Liliental-Weber, Z., Washburn, J., Weber, E. R., Sasaki, A., Wakahara, A., and Hasegawa, T., J. Vac. Sci. Technol. B 13, 1805 (1995).Google Scholar
4. Yu, B. D., Ide, T., and Oshiyama, A., Phys. Rev. B 50, 14631 (1994).Google Scholar
5. Eaglesham, D. J., Unterwald, F. C., and Jacobson, D. C., Phys. Rev. Lett. 70, 966 (1993).Google Scholar
6. Cao, R., Yang, X., Terry, J., and Pianetta, P., Appl. Phys. Lett. 61, 2347 (1992).Google Scholar
7. Voigtlander, B., Zinner, A., Weber, T., and Bonzel, H. P., Phys. Rev. B 51, 7583 (1995).Google Scholar
8. Copel, M., Reuter, M. C., Kaxiras, E., and Tromp, R. M., Phys. Rev. Let. 63, 632 (1989).Google Scholar
9. Osten, H. J., Klatt, J., Lippert, G., Dietrich, B., and Bugiel, E., Phys. Rev. Lett. 69, 480 (1992).Google Scholar
10. Jernigan, G. G., Thompson, P. E., and Silvestre, C. L., Surf. Sci. 380, 417 (1997).Google Scholar
11. Thompson, P. E., Twigg, M. E., Godbey, D. J., Hobart, K. D., and Simons, D. S., J. Vac. Sci. Technol. B 11, 1077 (1993).Google Scholar
12. Hobart, K. D., Godbey, D. J., Twigg, M. E., Fatemi, M., Thompson, P. E., and Simons, D. S., Surf. Sci. 334, 29 (1995).Google Scholar
13. Fukatsu, S., PhD. Thesis, University of Tokyo, 1992.Google Scholar
14. Falta, J., Bahr, D., Materlik, G., Muller, B. H., and Horn-von Hoegen, M., Appl. Phys. Lett. 68, 1394 (1996).Google Scholar
15. Fujita, K., Fukatsu, S., Yaguchi, H., Igarashi, T., Shiraki, Y., and Ito, R., Mat. Res. Soc. Symp. Proc. 220, 193 (1991).Google Scholar
16. Sakamoto, K., Matsuhata, H., Kyoya, K., Miki, K., and Sakamoto, T., Jpn. J. Appl. Phys. 33, 2307 (1994).Google Scholar
17. Markov, i., Phys. Rev. B 50, 11271 (1994).Google Scholar
18. Barnett, S. A., Winters, H. F., and Greene, J. E., Surf. Sci. 165, 303 (1986).Google Scholar
19. Jorke, H., Surf. Sci. 193, 569 (1988).Google Scholar
20. Hobart, K. D., Godbey, D. J., Thompson, P. E., and Simons, D. S., Appl. Phys. Lett. 63, 1381 (1993).Google Scholar
21. Guyer, J. E. and Voorhees, P. W., Phys. Rev. B 54, 11710 (1996).Google Scholar
22. Zhu, H., et al., J. Cryst. Growth 179, 115 (1997).Google Scholar
23. Horn-von Hoegen, M., Miller, B. H., and Al-Falou, A., Phys. Rev. B 50, 11640 (1994).Google Scholar
24. LeGoues, F. K., Copel, M., and Tromp, R., Phys. Rev. Lett. 63, 1826 (1989).Google Scholar
25. Osten, H. J. and Klatt, J., Appl. Phys. Lett. 65, 630 (1994).Google Scholar
26. Katayama, M., Nakayama, T., Aono, M., and McConville, C. F., Phys. Rev. B 54, 8600 (1996).Google Scholar
27. People, R. and Bean, J. C., Appl. Phys. Lett. 47, 322 (1985); Appl. Phys. Lett 49 229 (1986).Google Scholar