Hostname: page-component-cd9895bd7-hc48f Total loading time: 0 Render date: 2025-01-02T20:37:42.027Z Has data issue: false hasContentIssue false

Local Dynamics of Poly(ethylene oxide) Confined in 1nm Slits

Published online by Cambridge University Press:  11 February 2011

V. Kuppa
Affiliation:
Department of Materials Science and Engineering, The Pennsylvania State University, 325-D Steidle Building, University Park, PA 16802, USA
E. Manias
Affiliation:
Department of Materials Science and Engineering, The Pennsylvania State University, 325-D Steidle Building, University Park, PA 16802, USA
Get access

Abstract

Molecular Dynamics simulations are used to explore the short-time dynamics of nanoscopically confined poly(ethylene oxide). Both bulk and confined systems have been studied using an atomistically detailed force field so as to comparatively illustrate their differences and complement experimental results. Our aim is to elucidate the origins of the counter intuitive distribution of relaxation times for C-H bond reorientation for PEO in severe confinements, as experimentally observed in solid state 2H NMR studies. In contrast with the respective bulk PEO system, where a transition from distinct solid to liquid like dynamics is seen with increasing temperature, for the confined chains there is a coexistence of fast and slow segmental dynamics over a wide temperature range. Our studies have revealed that factors such as local density inhomogeneities, proximity of Li+, and translational motion, synergistically contribute to the generation of fast PEO segmental dynamics in 1nm confinements.

Type
Research Article
Copyright
Copyright © Materials Research Society 2003

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Giannelis, E.P., Krishnamoorti, R.K., Manias E. Adv. Polym. Sci., 138 (1998) 107.Google Scholar
[2] Wu, J., and Chem, Lerner M. M.. Mater., 5 (1993) 835.Google Scholar
[3] Vaia, R. A., Sauer, B. B., Tse, O. K., and Giannelis, E. P. J. Polym. Sci. Polym. Phys., 35 (1997) 59.Google Scholar
[4] Wang, L., Rocci-Lane, M., Brazis, P., Kannewurf, C. R., Kim, Y., Lee, W., Choy, J., and Kanatzidis, M. G. J. Am. Chem. Soc., 122 (2000) 6629.Google Scholar
[5] Wong, S., Vaia, R.A., Giannelis, E.P., Zax, D.B. Solid State Ionics, 86 (1992) 547.Google Scholar
[6] Vaia, R.A., Vasudevan, S., Krawiec, W., Giannelis, E.P. Adv. Mater., 7 (1995) 154.Google Scholar
[7] Yang, D. K., Zax, D. B. J. Chem. Phys., 110 (1999) 5325.Google Scholar
[8] Muller-Plathe, F. Acta Polymer., 45 (1994) 259.Google Scholar
[9] Smith, G. D., Jaffe, R. L., Yoon, D. Y. J. Phys. Chem., 97 (1993) 12752.Google Scholar
[10] Smith, G. D., Jaffe, R. L., Yoon, D. Y. J. Am. Chem. Soc., 117 (1995) 530.Google Scholar
[11] Hackett, E., Manias, E., Giannelis, E. P. Chem. Mater., 12 (2000) 2161.Google Scholar
[12] Londano, J. D., Annis, B. K., Habenschuss, A., Borodin, O., Smith, G. D., Turner, J. Z., Soper, A. K. Macromolecules., 30 (1997) 7151.Google Scholar
[13] Smith, G. D., Yoon, D. Y., Jaffe, R. L., Colby, R. H., Krishnamoorti, R., Fetters, L. J. Macromolecules., 29 (1996) 3462.Google Scholar
[14] Berendsen, H. J. C., Postma, J. P. M., van Gunsteren, W. F., Di Nola, A., Haak, J. R. J. Chem. Phys., 81 (1984) 3684.Google Scholar
[15] Chávez-Páez, M., Van Workum, K., de Pablo, L., de Pablo, J. J. J. Chem. Phys., 114 (2001) 1405.Google Scholar
[16] Torini, I. G., Sperb, R., Smith, P. E., van Gunsteren, W. F. J. Chem. Phys., 102 (1995) 5451.Google Scholar
[17] Manias, E., Kuppa, V., Yang, D.K., Zax, D.B. Coll. & Surf. A, 187 (2001) 509.Google Scholar
[18] Kuppa, V., Manias, E. Chem. Mater., 14 (2002) 2171.Google Scholar