Hostname: page-component-745bb68f8f-hvd4g Total loading time: 0 Render date: 2025-01-15T07:12:55.779Z Has data issue: false hasContentIssue false

Low Energy Threshold in the Growth of Cubic Boron Nitride Films by ECR Plasma Assisted Magnetron Sputtering

Published online by Cambridge University Press:  21 February 2011

C. A. Taylor II
Affiliation:
Harrison M. Randall Laboratory of Physics, University of Michigan, Ann Arbor, MI 48109–1120
S. Kidner
Affiliation:
Harrison M. Randall Laboratory of Physics, University of Michigan, Ann Arbor, MI 48109–1120
R. Clarke
Affiliation:
Harrison M. Randall Laboratory of Physics, University of Michigan, Ann Arbor, MI 48109–1120
Get access

Abstract

We report the growth of cubic boron nitride (cBN) films by magnetron sputtering on Si (100) substrates. The films are grown in the presence of negative substrate bias voltages and a nitrogen plasma produced by an electron cyclotron resonance source. We find evidence for a sharp low-voltage threshold in the substrate bias (-105 V) beyond which the samples are predominantly cBN. The structural quality of the cBN films is optimized in a narrow range of voltages near this threshold. We discuss the important role of energetic ions in the formation of cBN in light of recent theoretical findings.

Type
Research Article
Copyright
Copyright © Materials Research Society 1994

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Wentorf, R. H., J. Chem. Phys. 26, 956 (1957).Google Scholar
2. Davis, R. F., Proc. IEEE 79, 702 (1991).Google Scholar
3. Strite, S. and Morkoc, H., J. Vac. Sci. Technol. B 10, 1237 (1992).Google Scholar
4. Mieno, M., Yoshida, T., and Akashi, K., J. Japan Inst. Metals 52, 199 (1988).Google Scholar
5. Mieno, M. and Yoshida, T., Surface and Coatings Technol. 52, 87 (1992).Google Scholar
6. Wada, T. and Yamashita, N., J. Vac. Sci. Technol. A 10, 515 (1992).Google Scholar
7. Tanabe, N., Hayashi, T., and Iwaki, M., Diamond and Related Materials 1, 883 (1992).Google Scholar
8. Ballal, A. K., Salamanca-Riba, L., Doll, G. L., Taylor, C. A. and Clarke, R., J. Mater. Res. 7, 1618 (1992).Google Scholar
9. Kester, D. J., Ailey, K. S., Davis, R. F., and More, K. L., J. Mater. Res. 8, 1213 (1993).Google Scholar
10. Weber, A., et al, J. Phys. III (Paris) 2, 1931 (1992).Google Scholar
11. Ishizaka, A. and Shiraki, Y., J. Electrochem. Soc. 133, 666 (1986).Google Scholar
12. Kester, D. and Messier, R., Mat. Res. Soc. Symp. Proc. 235, 721 (1992); J. Appl. Phys. 72, 504 (1992).Google Scholar
13. Wu, W. and Fahy, S., Phys. Rev. B 49, 3030 (1994).Google Scholar
14. The 100 eV energy range assumes that the incident ion will recoil from the lattice upon collision, transfering approximately 50% of its kinetic energy.Google Scholar
15. Clark, C. D. and Mitchell, E. W. J., Institute of Physics Conference Series, Dubrovnik Conference “Radiation Effects in Semiconductors”, p. 45 (Institute of Physics, London, 1977).Google Scholar