Hostname: page-component-745bb68f8f-v2bm5 Total loading time: 0 Render date: 2025-01-15T07:19:24.285Z Has data issue: false hasContentIssue false

Low Potential Stable Glucose Detection at Carbon Nanotube Modified Gold Electrodes

Published online by Cambridge University Press:  01 February 2011

S. G. Wang
Affiliation:
Microelectronics Centre, School of Electrical and Electronic Engineering, Nanyang Technological University, Nanyang Avenue, Singapore 639798.
Qing Zhang
Affiliation:
Microelectronics Centre, School of Electrical and Electronic Engineering, Nanyang Technological University, Nanyang Avenue, Singapore 639798.
Ruili Wang
Affiliation:
Department of Community Occupational & Family Medicine, Faculty of Medicine, National University of Singapore, 10 Kent Ridge Crescent, Singapore 119260.
D. J. Yang
Affiliation:
Microelectronics Centre, School of Electrical and Electronic Engineering, Nanyang Technological University, Nanyang Avenue, Singapore 639798.
S. F. Yoon
Affiliation:
Microelectronics Centre, School of Electrical and Electronic Engineering, Nanyang Technological University, Nanyang Avenue, Singapore 639798.
R. Zhang
Affiliation:
Microelectronics Centre, School of Electrical and Electronic Engineering, Nanyang Technological University, Nanyang Avenue, Singapore 639798.
Get access

Abstract

The subtle electronic properties and large electroactive surface of carbon nanotubes (CNTs) suggest that they have the ability to promote electron-transfer and favor electrocatalytic behavior in electrochemical reactions when they are employed as an electrode. In this paper, CNT-modified gold electrodes for glucose biosensor have been fabricated using multi-walled carbon nanotubes. The CNT-based electrode exhibits a strong and stable amperometric response toward glucose even at a low potential of +0.35 V versus Ag/AgCl in comparison with the glassy carbon-based electrode.

Type
Research Article
Copyright
Copyright © Materials Research Society 2004

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Chi, Q., Zhang, J., Dong, S., Wang, E., Electrochim. Acta 39, 2431 (1994).Google Scholar
2. Sotriropoulou, S., Gavalas, V., Vamvakaki, V., Chaniotakis, N. A., Biosensors and Bioelectronics 18, 211 (2003).Google Scholar
3. Szucs, A., Hitchens, G. D., Bockris, J. O. M., Bioelectrochem. Bioenerg. 21, 133 (1989).Google Scholar
4. Higson, S. P. J., Vadgama, P. M., Analytica Chimica Acta 300, 85 (1995).Google Scholar
5. Wu, J., Zhu, J., Zhang, G., Lin, X., Cheng, N., Analytica Chimica Acta 327, 133 (1996).Google Scholar
6. Iijima, S., Nature 354, 56 (1991).Google Scholar
7. Iijima, S., Ichihashi, T., Nature 363, 603 (1993).Google Scholar
8. Britto, P. J., Santhanam, K. S. V., Ajayan, P. M., Biosensors and Bioelectronics 41, 121 (1996).Google Scholar
9. Chen, R. J., Zhang, Y., Wang, D., Dai, H., J. Am. Chem. Soc. 123, 3838 (2001).Google Scholar
10. Musameh, M., Wang, J., Merkoci, A., Liu, Y., Electrochemistry Communications 4, 743 (2002).Google Scholar
11. Wang, S. G., Zhang, Qing, Wang, Ruili, Yoon, S. F., Ahn, J., Yang, D. J., Tian, J. Z., Li, J. Q., Zhou, Q., Electrochemistry Communications 5, 800 (2003).Google Scholar
12. Sotiropoulou, S., Chaniotakis, N. A., Anal. Bioanal. Chem. 375, 103 (2003).Google Scholar
13. Guiseppi-Elie, A., Lei, C. H., Baughman, R. H., Nanotechnology 13, 559 (2002).Google Scholar
14. Besteman, K., Lee, J. O., Wiertz, F. G. M., Heering, H. A., Dekker, C., Nano Letters 3, 727 (2003).Google Scholar
15. Wang, S. G., Zhang, Qing, Wang, Ruili, Yoon, S. F., Biochemical and Biophysical Communications 311, 572 (2003).Google Scholar